Comparteix:

Ferran Reverter

1. CONTACT DETAILS

Department of Electronic Engineering

Universitat Politècnica de Catalunya (UPC)

C/ Esteve Terradas, nº 7, C4-121

08860 Castelldefels (Barcelona), SPAIN

Phone +34 93 4137076

E-mail ferran.reverter@upc.edu

2. BIOGRAPHY

Ferran Reverter was born in Llagostera, Spain, on January 4, 1976. In 1998, he received the BSc degree in Industrial Electronic Engineering from the University of Girona. In 2001, he received the MSc degree in Electronic Engineering from the University of Barcelona. In 2004, he received the PhD degree in Electronic Engineering from the UPC. Since 2001 he has been with the UPC, where he is an Associate Professor in Analog Electronics and Digital Systems. Since 2018, he has also been with the Open University of Catalonia (UOC), where he is a Course Instructor in Electronic Instrumentation. He was a visiting Post-Doctoral Researcher with the Delft University of Technology (Delft, The Netherlands) from 2005 to 2007, and with the Imperial College London (London, UK) in 2012.

3. RESEARCH

His research interests are in the field of electronic instrumentation at the System on Board (SoB) and System on Chip (SoC) levels. The main topics of research are:

1)     Interface electronics for smart sensors.

2)     Power-processing circuits for autonomous sensors.

3)     On-chip MOSFET thermal sensors for IC testing.

4. MERITS & AWARDS

2019 - present

Honorary Adjunct Professor with the Indian Institute of Technology Madras (Chennai, India).

2018 – present

Associate Editor and member of the editorial board of IEEE Trans. Instrum. Meas.

2015 – present

Associate Editor and member of the editorial board of IEEE Sensors Journal.

2020

Recognized as a Top 70 Most Productive Associate Editor from the IEEE Instrumentation and Measurement Society, in the 70th anniversary of IEEE Trans. Instrum. Meas.

2020

Guest Editor of IEEE Sensors Journal, for the special issue “Advanced interface circuits for autonomous smart sensors”.

2014, 2018, 2019

Recognized as an Outstanding Reviewer from the IEEE Instrumentation and Measurement Society, for his outstanding service as a reviewer to IEEE Trans. Instrum. Meas.

2019

Recipient of the best paper award in the category of “Magnetic and Capacitive Sensors” at the 13th International Conference on Sensing Technology (ICST), Sydney, Australia.

2016

Guest Editor of Sensors, for the special issue “Autonomous sensors”.

2012

Recipient of the “José Castillejo” fellowship (JC2011-0314) from the Spanish Ministry of Education.

2011

Recipient of the “Joan Oró” Award from the Catalan Association of Scientific Communication for his contribution to the research dissemination.

 5. PUBLICATIONS

 5.1. JOURNAL PUBLICATIONS

   [1]  M. A. Haberman, E. M. Spinelli and F. Reverter, High-linearity front-end circuit for remote grounded capacitive sensors, IEEE Trans. Instrum. Meas. 70 (2021) 2003108 (8pp).

   [2]  J. Altet, E. Barajas, D. Mateo, A. Billong, X. Aragones, X. Perpiñà and F. Reverter, BPF-based thermal sensor circuit for on-chip testing of RF circuits, Sensors 21 (2021) 805 (16pp).

   [3]  L. Areekath, B. George and F. Reverter, Analysis of a direct microcontroller interface for capacitively-coupled resistive sensors, IEEE Trans. Instrum. Meas. 70 (2021) 1501010 (10pp).

   [4]  F. Reverter and M. Gasulla, A novel general-purpose theorem for the analysis of linear circuits, IEEE Trans. Circuits Syst. II Exp. Briefs 68 (1) (2021) 63-66.

   [5]  L. Areekath, B. George and F. Reverter, An auto-balancing capacitance-to-pulse-width converter for capacitive sensors, IEEE Sens. J. 21 (1) (2021) 765-775.

   [6]  F. Reverter, A microcontroller-based interface circuit for non-linear resistive sensors, Meas. Sci. Technol. 32 (2021) 027001 (4pp).

   [7]  L. Areekath, B. George and F. Reverter, A closed-loop capacitance-to-frequency converter for single-element and differential capacitive sensors, IEEE Trans. Instrum. Meas. 69 (11) (2020) 8773-8782.

   [8]  E. Ripoll-Vercellone, F. Reverter and M. Gasulla, LED-based wake-up circuit for microcontrollers, IEEE Trans. Instrum. Meas. 69 (9) (2020) 5966-5968.

   [9]  F. Reverter and M. Gasulla, Demodulating AM square signals via a digital timer for sensor applications, IEEE Trans. Instrum. Meas. 69 (5) (2020) 2593-2601.

[10]  F. Reverter, Toward non-CPU activity in low-power MCU-based measurement systems, IEEE Trans. Instrum. Meas. 69 (1) (2020) 15-17.

[11]  L. Areekath, B. George and F. Reverter, An extended study on an interference-insensitive switched capacitor CDC, IEEE Sens. J. 19 (18) (2019) 8283-8292.

[12]  X. Perpiñà, F. Reverter, J. León, E. Barajas, M. Vellvehi, X. Jordà and J. Altet, Output power and gain monitoring in RF CMOS class A power amplifiers by thermal imaging, IEEE Trans. Instrum. Meas. 68 (8) (2019) 2861-2870.

[13]  M. Gasulla, E. Ripoll-Vercellone and F. Reverter, A compact Thévenin model for a rectenna and its application to an RF harvester with MPPT, Sensors 19 (7) (2019) 1641 (14pp).

[14]  E. Sifuentes, R. Gonzalez-Landaeta, J. Cota-Ruiz and F. Reverter, Seat occupancy detection based on a low-power microcontroller and a single FSR, Sensors 19 (3) (2019) 699 (11pp).

[15]  F. Reverter, Rail-to-rail timer-based demodulator for AM sensor signals, IEEE Trans. Instrum. Meas. 68 (1) (2019) 306-308.

[16]  F. Reverter, C. Glaser and M. Gasulla, Efficiency optimization in burst-mode buck dc/dc converters for sensor nodes, IEEE Sens. J. 18 (17) (2018) 7141-7149.

[17]  F. Reverter and M. Gasulla, Timer-based demodulator for AM sensor signals applied to an inductive displacement sensor, IEEE Trans. Instrum. Meas. 66 (10) (2017) 2780-2788.

[18]  F. Reverter, X. Perpiñà, E. Barajas, J. León, M. Vellvehi, X. Jordà and J. Altet, Single-MOSFET DC thermal sensor for RF-amplifier central frequency extraction, Sens. Actuators A 264 (2017) 157-164.

[19]  F. Reverter and M. Gasulla, Optimal inductor current in boost DC/DC converters regulating the input voltage applied to low-power photovoltaic modules, IEEE Trans. Power Electron. 32 (8) (2017) 6188-6196.

[20]  E. Sifuentes, R. Gonzalez-Landaeta, J. Cota-Ruiz and F. Reverter, Measuring dynamic signals with direct sensor-to-microcontroller interfaces applied to a magnetoresistive sensor, Sensors 17 (2017) 1150 (12pp).

[21]  X. Perpiñà, J. León, J. Altet, M. Vellvehi, F. Reverter, E. Barajas and X. Jordà, Thermal phase lag heterodyne infrared imaging for current tracking in radio frequency integrated circuits, Appl. Phys. Lett. 110 (2017) 094101.

[22]  F. Reverter, X. Perpiñà, E. Barajas, J. León, M. Vellvehi, X. Jordà and J. Altet, MOSFET dynamic thermal sensor for IC testing applications, Sens. Actuators A 242 (2016) 195-202.

[23]  F. Reverter and M. Gasulla, Optimal inductor current in boost DC/DC converters operating in burst mode under light-load conditions, IEEE Trans. Power Electron. 31 (1) (2016) 15-20.

[24]  Z. Kokolanski, J. Jordana, M. Gasulla, V. Dimcev and F. Reverter, Direct inductive sensor-to-microcontroller interface circuit, Sens. Actuators A 224 (2015) 185-191.

[25]  F. Reverter and J. Altet, On-chip thermal testing using MOSFETs in weak inversion, IEEE Trans. Instrum. Meas. 64 (2) (2015) 524-532.

[26]  J. Altet, J.L. González, D. Gomez, X. Perpiñà, W. Claeys, S. Grauby, C. Dufis, M. Vellvehi, D. Mateo, F. Reverter, S. Dilhaire and X. Jordà, Electro-thermal characterization of a differential temperature sensor in a 65 nm CMOS IC: Applications to gain monitoring in RF amplifiers, Microelectron. J. 45 (2014) 484-490.

[27]  F. Reverter and J. Altet, MOSFET temperature sensors for on-chip thermal testing, Sens. Actuators A 203 (2013) 234-240.

[28]  F. Reverter, D. Gómez and J. Altet, On-chip MOSFET temperature sensor for electrical characterization of RF circuits, IEEE Sens. J. 13 (9) (2013) 3343-3344.

[29]  F. Reverter, Power consumption in direct interface circuits, IEEE Trans. Instrum. Meas. 62 (2) (2013) 503-509.

[30]  F. Reverter, The art of directly interfacing sensors to microcontrollers, J. Low Power Electron. Appl. 2 (2012) 265-281.

[31]  F. Reverter and Ò. Casas, Interfacing differential capacitive sensors to microcontrollers: a direct approach, IEEE Trans. Instrum. Meas. 59 (10) (2010) 2763-2769.

[32]  F. Reverter and Ò. Casas, A microcontroller-based interface circuit for lossy capacitive sensors, Meas. Sci. Technol. 21 (2010) 065203 (8pp).

[33]  E.M. Spinelli and F. Reverter, On the stability of shield-driver circuits, IEEE Trans. Instrum. Meas. 59 (2) (2010) 458-462.

[34]  F. Reverter and Ò. Casas, Interfacing differential resistive sensors to microcontrollers: a direct approach, IEEE Trans. Instrum. Meas. 58 (10) (2009) 3405-3410.

[35]  E. Sifuentes, Ò. Casas, F. Reverter and R. Pallàs-Areny, Direct interface circuit to linearise resistive sensor bridges, Sens. Actuators A 147 (2008) 210-215.

[36]  F. Reverter and Ò. Casas, Direct interface circuit for capacitive humidity sensors, Sens. Actuators A 143 (2008) 315-322.

[37]  F. Reverter, X. Li and G.C.M. Meijer, A novel interface circuit for grounded capacitive sensors with feedforward-based active shielding, Meas. Sci. Technol. 19 (2008) 025202 (5pp).

[38]  F. Reverter, X. Li and G.C.M. Meijer, Liquid-level measurement system based on a remote grounded capacitive sensor, Sens. Actuators A 138 (2007) 1-8.

[39]  F. Reverter, M. Gasulla and R. Pallàs-Areny, Analysis of power-supply interference effects on direct sensor-to-microcontroller interfaces, IEEE Trans. Instrum. Meas. 56 (1) (2007) 171-177.

[40]  F. Reverter, X. Li and G.C.M. Meijer, Stability and accuracy of active shielding for grounded capacitive sensors, Meas. Sci. Technol. 17 (2006) 2884-2890.

[41]  F. Reverter and R. Pallàs-Areny, Uncertainty reduction techniques in microcontroller-based time measurements, Sens. Actuators A 127 (2006) 74-79.

[42]  F. Reverter, M. Gasulla and R. Pallàs-Areny, Analysis of interference effects on period-to-digital conversions, Meas. Sci. Technol. 16 (2005) 2261-2264.

[43]  F. Reverter and R. Pallàs-Areny, Experimental analysis of power supply interference rejection in commercial quasi-digital sensors, IEEE Sens. J. 5 (5) (2005) 1075-1081.

[44]  S.Y. Yurish, F. Reverter and R. Pallàs-Areny, Measurement error analysis and uncertainty reduction for period- and time-interval-to-digital converters based on microcontrollers, Meas. Sci. Technol. 16 (2005) 1660-1666.

[45]  F. Reverter, J. Jordana, M. Gasulla and R. Pallàs-Areny, Accuracy and resolution of direct resistive sensor-to-microcontroller interfaces, Sens. Actuators A 121 (2005) 78-87.

[46]  F. Reverter, M. Gasulla and R. Pallàs-Areny, Analysis of power supply interference effects on quasi-digital sensors, Sens. Actuators A 119 (2005) 187-195.

[47]  F. Reverter and R. Pallàs-Areny, Effective number of resolution bits in direct sensor-to-microcontroller interfaces, Meas. Sci. Technol. 15 (2004) 2157-2162.

[48]  F. Reverter, Ò. Casas, J. Jordana and R. Pallàs-Areny, Trigger uncertainty in period-to-code converters based on counters embedded in microcontrollers, Sens. Actuators A 110 (2004) 439-446.

5.2. BOOKS AND BOOK CHAPTERS

[1]    F. Reverter, Sensores, Chapter 2, Edicions UOC, Barcelona, 2021 (in Catalan and Spanish)

[2]    F. Reverter, Descripción de un sistema de instrumentación, Chapter 1, Edicions UOC, Barcelona, 2020 (in Catalan and Spanish).

[3]    F. Reverter, Interfacing sensors to microcontrollers: A direct approach, in: S. Nihtianov and A. Luque, Smart sensors and MEMS, Chapter 2, Woodhead Publishing, 2nd ed., Duxford, UK, 2018.

[4]     F. Reverter, F. Vidal-Verdú and J.A. Hidalgo-Lopez, Advanced techniques for directly interfacing resistive sensors to digital systems, in: B. George, J.K. Roy, V.J. Kumar and S.C. Mukhopadhyay, Advanced Interfacing Techniques for Sensors, Chapter 4, Springer, Cham, Switzerland, 2017.

[5]     F. Reverter, Direct interface circuits for sensors, in: S. Nihtianov and A. Luque, Smart sensors and MEMS, Chapter 2, Woodhead Publishing, Cambridge, UK, 2014.

[6]     F. Reverter and R. Pallàs Areny, Circuitos de interfaz directa sensor-microcontrolador, Marcombo, Barcelona, 2008 (in Spanish).

[7]     F. Reverter and R. Pallàs-Areny, Direct sensor-to-microcontroller interface circuits. Design and characterisation, Marcombo, Barcelona, 2005.

 5.3. PATENTS

   [1]  L. Areekath, B. George and F. Reverter, Simple direct microcontroller interface for capacitively-coupled resistive sensors, 202041021691 (Indian patent).

   [2]  F. Reverter, Circuito y método para demodular señales mediante un temporizador digital, P201630530, ES2639476B1 (Spanish patent).

   [3]  F. Reverter, Z. Kokolanski, J. Jordana and M. Gasulla, Circuito y método para medir sensores inductivos mediante un microcontrolador, P201430718, ES2551511B1 (Spanish patent)

   [4]  F. Reverter and J. Altet, Sensor circuit for obtaining small-signal temperature measurements in integrated circuits, P201230273, ES2425299B1, PCT/ES2013/070095.