
METFAC-2.1 User’s Guide

Vı́ctor Suñé and Juan A. Carrasco

Last Revision: July 7, 2021

2

Contents

Introduction 5

1 A Tutorial 7
1.1 Model Specification . 7

1.1.1 The model specification file . 8
1.1.2 The optional C file . 13

1.2 Model Compilation . 14
1.3 Model Execution . 16

2 Model Specification Language 25
2.1 Lexis . 25
2.2 Syntax and Semantics . 26

3 Model Debugging 31

4 Measures 37
4.1 Expected Transient Reward Rate . 40
4.2 Expected Steady-State Reward Rate . 46
4.3 Expected Averaged Reward Rate . 54
4.4 Cumulative Reward Complementary Distribution 59
4.5 Interval Availability Complementary Distribution 64
4.6 Expected Cumulative Reward Till Exit of a subset of states 69
4.7 Cumulative Reward Distribution Till Exit of a subset of states 73

A Installing the Tool 81

B The Preprocessor 83
B.1 File model.c . 84
B.2 File model.h . 92

C Rewarded CTMCs Description 95
C.1 Verbose Description . 95
C.2 Compact Description . 99

4 CONTENTS

D Error and warning messages 101
D.1 Error Messages . 101
D.2 Warning Messages . 107

E Mathematical Justifications 111
E.1 Formalization of the Computation of Some Measures 111
E.2 Extension to Impulse Rewards of Some Measures 114

F A Tutorial on Rewarded Finite CTMCs 117
F.1 Finite CTMCs . 117
F.2 Rewarded Finite CTMCs . 120

G Some Sizable Examples 123
G.1 A Reliability Model of a 5-level RAID Storage Subsystem 123
G.2 A Reliability Model of a Storage System . 129
G.3 A Performability Model of a Multiprocessor System 137

Introduction

METFAC-2.1 is a tool for the specification and solution of rewarded, finite continuous-time Mar-
kov chains (CTMCs) with a reward structure including reward rates associated with states. (Ap-
pendix F provides a brief tutorial on rewarded finite CTMCs.) To install and use the tool, the
programming environment must provide:

1. A C compiler compliant with the ISO/IEC 9899:1999 standard (C99) with enabled support
for the IEC 60559:1989 floating-point standard (also designated as ANSI/IEEE 754-1985).

2. A C-shell (csh).

3. The utilities ar to create and modify archives, ranlib to generate indices to archives, nm to
list symbols from object files, and grep to search for a pattern in a file.

4. The functions getrusage to measure CPU times, sigemptyset and sigaction to handle
signals, and timer create, timer settime, and timer delete to handle timers, all with
the syntax and semantics described in the POSIX.1-2001 standard (IEEE Std 1003.1-2001).

Main features of the tool are:

1. Flexible and easy-to-use parametric model specification through a language based on pro-
duction rules that allows the use of quite arbitrary C-like expressions and external C func-
tions.

2. Fast generation of very large rewarded CTMC models.

3. Well tested (almost 100% coverage of reachable code).

4. CPU time limits controlled by operating system signals to avoid the tool to hung up.

5. Computation using numerical methods and estimation using robust simulation based on
estimators which are guaranteed to reduce the variance of the estimators of naive simulation,
which is always finite, of seven reward measures in almost their full generality.

6. Incorporation of numerical methods targeted at the computation of some reward measures
or bounds for them for classes of finite CTMC models including both exact and bounding
failure/repair models of fault-tolerant systems with exponential failure and repair time dis-
tributions and repair in every state with failed components and, perhaps, that the structure
function of the modeled system be increasing, with component failure rates much smaller
than component repair rates.

6 Introduction

This document describes and explains how to use METFAC-2.1. Section 1 is a short tutorial
introduction to the usage of the tool. Section 2 gives a detailed description of the model specifica-
tion language based on production rules supported by the tool. Section 3 describes the mechanisms
provided by the tool for model debugging. Section 4 defines the seven reward measures imple-
mented in METFAC-2.1, which can be computed using numerical methods and estimated using
simulation. For each measure, the numerical and simulation methods offered by the tool are listed,
describing in detail the input the user has to provide. Some methods require the rewarded finite
CTMC model to fulfill some conditions and these conditions are clearly identified. Appendix A
describes how to install the tool. Appendix B includes a detailed description of the preprocessor
of the tool that translates model specifications into model-specific C code. Appendix C describes
the format of the textual CTMC description files optionally generated by the tool. Those files can
be used for model debugging and to interface the tool with other tools. Appendix D describes the
error and warning messages issued by the tool. Appendix E provides some mathematical justifi-
cations. Appendix F is a brief tutorial on rewarded CTMCs. Finally, Appendix G illustrates the
capabilities of the tool using three sizable modeling examples of increasing complexity.

Regarding acknowledgement of the research that has led to the development of the tool, you
can cite this User’s Guide if you want to acknowledge the tool itself. If you want to acknowl-
edge some particular numerical method incorporated into the tool and developed by us, we would
appreciate your citing the reference for the method that is cited in this User’s Guide.

Section 1

A Tutorial

In METFAC-2.1, rewarded finite CTMCs are defined by the user in textual form using a model
specification language supported by the tool. In this section we illustrate through a small example
how to: 1) define a rewarded CTMC using that model specification language, 2) compute using a
numerical method one of the reward measures offered by the tool, 3) estimate using simulation one
of the reward measures offered by the tool, and 4) generate a compact description of the rewarded
CTMC that could possibly be used as input for other tools. We will also take advantage of the
example to make some general comments on features of the tool.

The example is a CTMC reliability model of the fault-tolerant system whose block diagram
is shown in Figure 1.1. The fault-tolerant system includes five processing modules (PM) and a
restoring subsystem implementing fault detection, fault identification, and system reconfiguration.
When no processing module is failed, three of the five processing modules are active working in
a triple modular redundancy (TMR) configuration and the remaining two processing modules are
acting as spares. The three active modules working in a TMR configuration execute the same task
and vote their results. Fault detection and fault identification is based on the results issued by the
active modules. If an active processing module fails and some spare is available, the restoring
subsystem isolates the faulty module and switches in an unfailed spare. When no unfailed spare
is available, a fault in an active module is managed by degrading the operation of the system to
a duplex mode in which the two active processing modules compare their results to achieve fault
detection. Any fault in a processing module when the system is working in duplex mode causes a
system failure. A fault in the restoring subsystem also causes a system failure. Active processing
modules fail with rate λM; spare modules fail with rate θλM, where θ, 0 ≤ θ < 1 is a dormancy
factor accounting for the fact that spare processing modules fail less often than active processing
modules. The restoring subsystem fails with rate λR. Components do not fail when the system
has failed. The system is initially in the state with no processing module failed with probability
0.75 and in the state with one processing module failed with probability 0.25.

1.1 Model Specification

A model specification includes a model specification file named name.spec, where name is a
string giving the model name and .spec is a mandatory suffix, and an optional C file named
name.c. The file name.spec includes a description of the model following the syntax of a model

8 1 A Tutorial

PM

PM

PM

PM

PM

ac
tiv

e
sp

ar
es

re
st

or
in

g
su

bs
ys

te
m

Figure 1.1: Block diagram of the example fault-tolerant system.

specification language based on production rules. The file name.c has to include definitions of all
the external model-specific C functions used by the syntactic constructs of the model description
included in the file name.spec and may include definitions of some C functions with predefined
names and prototypes providing information required by some numerical methods or specifying
the model checking to be performed. Those C functions with predefined names are summarized
in Section 1.1.2. Besides the external model-specific C functions defined in the file name.c, the
syntactic constructs of the model description contained in the file name.spec may use a subset
of standard mathematical C functions. Supported standard mathematical C functions are listed in
Table 2.1 on page 29.

1.1.1 The model specification file

The model specification file consists of a declarative part followed by an executive part.
The declarative part comprises, in no particular order, a declaration of state variables, an op-

tional declaration of parameters, and an optional declaration of external model-specific functions.
The declaration of state variables consists of the keyword state variables followed by a

comma-separated list of state variable identifiers.1

The declaration of parameters consists of the keyword parameters followed by comma-
separated lists of parameters, each list including the common type of the parameters in the list,
which has to be int or double, followed by the parameter identifiers separated by commas.2

The declaration of external model-specific C functions consists of the keyword external

followed by comma-separated lists of function prototypes. External model-specific C functions
may have zero or more parameters and in the latter case all parameters have to be input parameters
of type int or double. Each list of function prototypes includes the common return type of
all functions of the list, which has to be int or double, followed by a comma separated list of

1In general, identifiers consist of sequences of alphabetic characters, digits and underscores, starting with an alpha-
betic character or an underscore, different from the reserved words of the language listed in Section 2.1, page 25.

2For instance, a legal declaration could be: parameters int a, b, double c, int d, e.

1.1 Model Specification 9

succinct function prototypes. Each succinct prototype includes the identifier of the function and a
comma separated list enclosed between parentheses of the parameter types.3

The example model will be called TMR hybrid and its description will include two files: the
file TMR hybrid.spec and the file TMR hybrid.c. The state of the model can be described using
three state variables: the number of active processing modules, NA, the number of unfailed spare
processing modules, NUS, and the state of the restoring subsystem, R (1 if up, 0 if down). Param-
eters of the model will include the failure rates, λM and λR, of, respectively, active processing
modules and the restoring subsystem and the dormancy factor θ. Parameters will all be of type
double and will be called LD M, LD R, and THETA, respectively. The model description will make
use of two external model-specific C functions. The first of them is called sys up and has two int
parameters, which are expected to be the values of the state variables NA and R. The function re-
turns value 1 if the system is up and returns value 0 otherwise. The second external model-specific
C function is called init prob and has three int parameters, which are expected to be the values
of the state variables NA, NUS, and R. The function returns the value of the initial probability of the
state. Accordingly, the declarative part of TMR hybrid.spec may be as follows:4

state_variables

NA, /* number of active modules */

NUS, /* number of unfailed spare modules */

R /* yes (1) if the restoring subsystem is up; no (0) otherwise */

parameters

double

LD_M, /* failure rate of active modules */

LD_R, /* failure rate of the restoring subsystem */

THETA /* dormancy factor for spare modules */

external

int sys_up(int, int), /* yes (1) if system up; no (0) otherwise */

double init_prob(int, int, int) /* initial probability */

Notice that, as in the C programming language, comments are enclosed by /* and */ and cannot
be nested. The reserved words yes and no stand for, respectively, the int constants 1 and 0. They
can be used to improve readability.

The executive part of the model specification file comprises, in no particular order, the speci-
fication of the state starting at which the CTMC has to be generated (we will refer to that state as
the “start state”), an optional specification of the initial probability distribution, the specification
of the reward rate structure, and the specification of the production rules.

The specification of the start state consists of the keyword start state followed by a comma-
separated list of assignments to state variables. There must be one and only one assignment for
each state variable of the model. The right-hand side of each assignment must be an expression
not involving state variables. The type of the result of such an expression must be int.5

The optional specification of the initial probability distribution consists of the keyword
initial probability followed by an expression. The type of the result of such an expres-

3For instance, a legal declaration could be: external int f1(int), f2(int,double), double f3(int),

f4(double).
4Again, state variables, parameters, and external model-specific functions can be declared in any order.
5The type of the result of an expression is determined as in C.

10 1 A Tutorial

sion must be double. When computing a measure using numerical methods, states of the CTMC
are assigned the initial probability that results from the evaluation of that expression. If the spec-
ification is absent, the start state is assigned an initial probability equal to 1 and the remaining
states are assigned an initial probability equal to 0. When a measure is estimated using simulation,
though, the specification of the initial probability distribution has no effect and the initial proba-
bility distribution always used is: Initial probability equal to 1 for the start state and equal to 0 for
the remaining states.

The specification of the reward rate structure consists of the keyword reward rate followed
by an expression. The type of the result of such an expression must be double. States of the
CTMC are assigned the reward rate that results from the evaluation of that expression.

In the example, we choose as start state the state with no processing module failed, set to 0.75
the initial probability of that state and to 0.25 the initial probability of the state with one processing
module failed, and set to 1 and 0 the reward rate of the states in which the system is, respectively,
up and down. Accordingly, the executive part of TMR hybrid.spec may begin as follows:

start_state NA=3, NUS=2, R=yes

initial_probability init_prob(NA, NUS, R)

reward_rate (double) sys_up(NA, R)

The specification of the production rules consists of the keyword production rules fol-
lowed by a non-empty list of rules. Each production rule defines an action that, if enabled, changes,
at a specified rate, the state of the CTMC by changing the values of some of the state variables.
METFAC-2.1 offers two types of actions: Actions with a finite rate and actions with rate +∞. In
the remaining of this document, unless stated otherwise we will use the word “action” for actions
with a finite rate, whereas actions with rate +∞ will be referred to as instantaneous actions.6

An action consist of an optional condition specification, an optional identifier, a rate specifica-
tion, and the specification of how state variables change their values. The optional condition spec-
ification consists of the keyword if followed by a C-like expression that may involve numerical
constants, state variables, parameters, external model-specific functions, the standard mathemati-
cal C functions listed in Table 2.1 on page 29, and the operators >, >=, <, <=, ==, !=, +, -, *, /,
&&, ||,!, + (unary), - (unary), (int), and (double). The type of the result of such an expression
must be int. The action will be enabled if the condition expression yields a value distinct from
zero. If no condition is specified, the action is always enabled.

Action identifiers are intended to enhance model readability. Valid action identifiers are se-
quences of alphabetic characters, digits and underscores, starting with an alphabetic character or
an underscore, different from the keywords of the language listed in Section 2.1, page 25.

The rate specification consists of the keyword with rate followed by a C-like expression that
may involve numerical constants, state variables, parameters, external model-specific functions,
the standard mathematical C functions listed in Table 2.1 on page 29, and the operators >, >=, <,
<=, ==, !=, +, -, *, /, &&, ||,!, + (unary), - (unary), (int), and (double). Rate expressions are
allowed to yield any positive result with type double.

6An instantaneous action can be thought of as an action that changes the values of some state variables infinitely
fast, i.e., instantaneously or in zero time.

1.1 Model Specification 11

The specification of how state variables change their values can be simple or with responses.
In the former case, the specification consists of the keyword next state followed by a comma-
separated list of assignments to state variables. The first production rule of the example is simple
and models the fault of the restoring subsystem:

if sys_up(NA, R) action FAIL_RESTORE with_rate LD_R

next_state R=no

The above production rule can be paraphrased as “if the system is up, with rate LD R change to a
state that differs from the current one in that the state variable R takes the value no.” In general,
there are three ways to specify how a state variable changes its value:

• By assigning using the operator = the result of evaluating an expression. Such a result must
have type int.

• By increasing or decreasing by one using the ++ or -- operator the current value of the state
variable.

• By adding to or subtracting from the current value of the state variable the result of eval-
uating an expression, multiplying the current value of the state variable by the result of
evaluating an expression, or dividing the current value of the state variable by the result of
evaluating an expression. As in C, this is achieved by using the operators +=, -=, *=, and
/= followed by the expression. In all cases, the type of the result of the expression must be
int.

The second production rule of the example is also simple and models the fault of a spare
processing module:

if sys_up(NA, R) && NUS>0 action FAIL_SPARE with_rate NUS*LD_M*THETA

next_state NUS-- /* alternatives: NUS=NUS-1, NUS-=1 */

The third production rule of the example has two responses and models the fault of an active
module. The use of responses is required because the state variables have to change in a different
way depending on whether the system has unfailed spare processing modules or not:

if sys_up(NA, R) action FAIL_ACTIVE with_rate NA*LD_M

if NUS>0 response CONTINUE

next_state NUS--

if NUS==0 response DUPLEX

next_state NA--

end

The previous production rule can be paraphrased as “if the system is up, with rate NA*LD M change
to a state which, if there are unfailed spare processing modules, differs from the current one in that
the state variable NUS is one less and, if there are not unfailed spare processing modules, differs
from the current one in that NA is one less.”

In general, production rules with responses may have one or more responses and must end
with the keyword end. Each response consists of an optional condition specification, an optional
identifier, an optional probability specification, and the specification of how state variables change
their values. The optional condition specification consists of the keyword if followed by a C-like

12 1 A Tutorial

expression as the one described for the condition specification of actions. The response will be
enabled if the condition expression yields a value distinct from zero and will be always enabled
if no condition is specified. Valid response identifiers are as valid action identifiers. The optional
probability expression consists of the keyword with prob followed by a C-like expression as the
one described for the rate specification of actions. Probability expressions must yield a result with
type double that is > 0 and ≤ 1. In addition, if the sum of the probabilities of the enabled
responses of an enabled action is larger than 1 by more than 1,000 times the “epsilon” constant
of the underlying hardware,7 a warning will be issued. If no probability expression is given,
the probability of the response has a default value of 1. The specification of how state variables
change their values consists of the keyword next state followed by a comma-separated list of
assignments to state variables. The rate at which the specified changes in the state variables occur
is the product of the value yielded by the rate expression of the action and the value yielded by the
probability expression of the response or 1 if no probability expression is given.

Instantaneous actions have the same syntactical structure as actions except that:

1. The condition specification is mandatory.

2. The rate specification consists of the keyword with rate followed by the keyword
infinity.

3. The specification of how state variables change their values cannot have responses, i.e. it
must consist of the keyword next state followed by a comma-separated list of assign-
ments to state variables.

The set of instantaneous actions of a model specification must fulfill the following two conditions:

• No instantaneous action is enabled in the start state.

• At most one instantaneous action is enabled in any state different from the start state.

Semantically, for an instantaneous action, the rate at which the specified changes in the state
variables occur is +∞.

When an instantaneous action is enabled in a state, with probability 1 the CTMC will spend
zero time in it (we say that the state is vanishing or instantaneous), jumping instantaneously to the
state to which the instantaneous action leads. Therefore, vanishing states have no impact on the be-
havior of the CTMC and can thus be deleted. In METFAC-2.1, vanishing states are always deleted
before computing a measure using a numerical method. This fact makes instantaneous actions, if
used judiciously, a useful device to reduce the number of states of the CTMC. In the example,
no production rule will be enabled in a state in which the system is down, making such a state
absorbing. Besides, there would be several of those absorbing states, each with the same reward
rate. Therefore, it makes sense to “merge” them into a single absorbing state described by, say,
the following values of the state variables: NA=0, NUS=0, R=no. This can be easily accomplished
by means of an instantaneous action:

if !sys_up(NA, R) && !(NA==0 && NUS==0 && R==no) action MERGE with_rate infinity

next_state NA=0, NUS=0, R=no

7The “epsilon” constant is the difference between the smallest exactly representable number greater than 1 and 1.

1.1 Model Specification 13

This completes the description of TMR hybrid.spec. Its contents is as follows:

state_variables

NA, /* number of active modules */

NUS, /* number of unfailed spare modules */

R /* yes (1) if the restoring subsystem is up; no (0) otherwise */

parameters

double

LD_M, /* failure rate of active modules */

LD_R, /* failure rate of the restoring subsystem */

THETA /* dormancy factor for spare modules */

external

int sys_up(int, int), /* yes (1) if system up; no (0) otherwise */

double init_prob(int, int, int) /* initial probability */

start_state NA=3, NUS=2, R=yes

initial_probability init_prob(NA, NUS, R)

reward_rate (double) sys_up(NA, R)

production_rules

if sys_up(NA, R) action FAIL_RESTORE with_rate LD_R

next_state R=no

if sys_up(NA, R) && NUS>0 action FAIL_SPARE with_rate NUS*LD_M*THETA

next_state NUS-- /* alternatives: NUS=NUS-1, NUS-=1 */

if sys_up(NA, R) action FAIL_ACTIVE with_rate NA*LD_M

if NUS>0 response CONTINUE

next_state NUS--

if NUS==0 response DUPLEX

next_state NA--

end

if !sys_up(NA, R) && !(NA==0 && NUS==0 && R==no) action MERGE with_rate infinity

next_state NA=0, NUS=0, R=no

1.1.2 The optional C file

The purpose of the file name.c is to define the external model-specific C functions used by the
syntactic constructs of the model description included in the file name.spec and, if necessary, to
define a set of C functions with predefined names and prototypes providing information required
by some numerical methods or specifying the model checking to be performed. There are four
such functions with predefined names and prototypes:

• block, pivot, regstat

Used to specify information required by some numerical methods. (See Section 4.2,
pages 47, 49, and Section 4.1, page 41.)

• check state.

Used for model checking. (See Section 3, page 31.)

14 1 A Tutorial

The file TMR hybrid.c includes the definition of two external model-specific C functions:
sys up and init prob. The first of them has to return the value 1 if the system is up and the value
0 otherwise; the second one has to return the value 0.75 for the state without failed components,
the value 0.25 for the state in which one processing module is failed, and the value 0 for the
remaining states. Accordingly, the contents of the file TMR hybrid.c is as follows:

#include "TMR_hybrid.h"

int

sys_up(int n_modules, int restoring_ok)

{

if (n_modules > 1 && restoring_ok)

return 1;

else

return 0;

}

double

init_prob(int n_modules, int n_spare, int restoring_ok)

{

if (n_modules == 3 && n_spare == 2 && restoring_ok)

return 0.75;

else if (n_modules == 3 && n_spare == 1 && restoring_ok)

return 0.25;

else

return 0.0;

}

Note the inclusion of the file TMR hybrid.h. That file is generated automatically when the model
is successfully compiled and is included so that the definitions of the external model-specific
C functions are checked against the succinct prototypes of those functions declared in the file
TMR hybrid.spec. Inclusion of the file TMR hybrid.h may have another important purpose: If
that file is included and the statement “DECLARE SYMBOLS;” is included in the declarative part of
any function with predefined name and prototype, the body of that functions can use the names
of state variables and the names of parameters, improving the readability of the definition of the
function. (See, for instance, Section 3, page 31.)

1.2 Model Compilation

Model compilation is done with the utility m2build, which takes as input the model name . Thus,
to compile the TMR hybrid model we would type

m2build TMR_hybrid

getting

[preproc inform] Completed with 0 error(s) and 0 warning(s) on line 34 of file

’TMR_hybrid.spec’.

1.2 Model Compilation 15

[m2build warning] Using default block() function.

[m2build warning] Using default check_state() function.

[m2build warning] Using default pivot() function.

[m2build warning] Using default regstat() function.

[m2build inform] ’TMR_hybrid.exe’ has been created.

Compilation in METFAC-2.1 is a two-stage process. In the first stage, the file TMR hybrid.spec

is analyzed and translated into model-specific C code encapsulated in a file called
TMR hybrid prep.c. (In general, a model specification file named name.spec is analyzed and
translated into model-specific C code encapsulated in a file called name prep.c.) Such an analy-
sis is performed by the preprocessing module preproc of the tool. That module can also be used
independently (see Appendix B, page 83).

If any error were encountered in TMR hybrid.spec, then preprocwould issue to the standard
error stream (usually the computer terminal) one or more error messages including

[preproc error ...] File ’TMR_hybrid.spec’

(the “...” stands for the error number) followed by a short description of the error, the user would
get on the standard output stream (usually the computer terminal) the messages

[preproc inform] No code generated.

[preproc inform] Completed with ... error(s) and ... warning(s) on line 34 of file

’TMR_hybrid.spec’.

(the “...” stand for the numbers of errors and warnings), and the compilation process would be
aborted. The preprocessing module can also issue warning messages (see Appendix B, page 84).
For TMR hybrid, such messages would include

[preproc warning ...] file ’TMR_hybrid.spec’

(the ’...’ stands for the warning number) followed by a short description of the warning. Warning
messages can (but should not) be ignored. Thus, the message

[preproc inform] Completed with 0 error(s) and 0 warning(s) on line 34 of file

’TMR_hybrid.spec’.

we get when compiling TMR hybrid informs us that the file TMR hybrid.spec has been suc-
cessfully analyzed without errors and without warnings and that the file TMR hybrid prep.c has
been generated.

The second stage of the compilation process is only activated if the first stage has been
successful (no errors were encountered during the analysis of the model specification file). In
that stage, the model-specific C code encapsulated in the file TMR hybrid prep.c and the file
TMR hybrid.c are compiled and linked to the model-independent core of the tool using a C com-
piler and several system utilities. The four warning messages

[m2build warning] Using default block() function.

[m2build warning] Using default check_state() function.

[m2build warning] Using default pivot() function.

[m2build warning] Using default regstat() function.

16 1 A Tutorial

we get when compiling TMR hybrid simply inform us that none of the functions with predefined
names have been defined in TMR hybrid.c and that, therefore, the respective default versions
have been used. The last message

[m2build inform] ’TMR_hybrid.exe’ has been created.

informs us that the executable file TMR hybrid.exe has been successfully created. All
messages generated by the C compiler and the system utilities are sent to a file named
TMR hybrid build.log. (In general, if the model specification file is named name.spec, the
executable file will be called name.exe and the file to which all messages generated by the C
compiler and system utilities are sent will be called name build.log.) That file is generated
to help the user fix errors in the file TMR hybrid.c causing a model compilation failure. Thus,
assuming, for instance, that we mistyped n active as n activ in the first line of the body of the
function sys up (see page 14), we would get the messages:

[preproc inform] Completed with 0 error(s) and 0 warning(s) on line 34 of file

’TMR_hybrid.spec’.

[m2build warning] Using default block() function.

[m2build warning] Using default check_state() function.

[m2build warning] Using default pivot() function.

[m2build warning] Using default regstat() function.

[m2build error] Compilation failed.

(See file ’TMR_hybrid_build.log’ for details.)

and the corresponding error messages of the compiler would have been written to the file
TMR hybrid build.log.

1.3 Model Execution

Once successfully compiled, a model is executed by running the corresponding executable file.
Thus, we can execute TMR hybrid by typing

TMR_hybrid.exe

If the model has parameters, the executable starts by prompting for numerical values for them.
Under the assignments λM = 10−4 h−1, λR = 10−6 h−1, and θ = 0.2, the interaction would look
like:

Model parameters

LD_M: 1e-4

LD_R: 1e-6

THETA: 0.2

We are prompted next to select the task to be performed by the tool. METFAC-2.1 offers four
tasks:

1. Computation of a measure using numerical methods.

1.3 Model Execution 17

2. Estimation of a measure using simulation.

3. Generation of a verbose description of a rewarded CTMC.

4. Generation of a compact description of a rewarded CTMC.

Computing or estimating a measure are the main tasks the tool is intended for; generating a ver-
bose description of the rewarded CTMC is intended for model debugging, an issue covered in
Section 3; generating a compact description of the rewarded CTMC makes it possible to interface
METFAC-2.1 with other tools. We note that the compact description is always generated after
deleting the vanishing states of the model.

After performing either of these tasks, the tool will create a file called TMR hybrid.log. (For
a model specification file named name.spec, that file would be called name.log.) That file will
contain: 1) the date and time of the day on which the model was compiled; 2) the date and time
of the day on which the model was executed; 3) if the model had parameters, the values given
to them; 4) a brief summary of the characteristics of the rewarded CTMC, 5) if the selected task
was to compute or estimate a measure, the computed or estimated value(s) of the measure along
with some statistics about how the numerical method(s) or the simulation performed; and 6) if
the selected task was to generate a verbose description of the rewarded CTMC, that description
in textual form. (Section C.1 of Appendix C describes the contents of the file name.log in that
case.) There are two other files than can possibly be created:

1. TMR hybrid.rng

This file, which for a model named name will be called name.rng, will be created after
estimating a measure using simulation. It contains the state of the pseudo-random number
generator upon termination of the simulation and can be used to restore the state of the
generator in a new simulation (see page 21). This means that in the new simulation, the
pseudo-random number generator will continue the sequence of pseudo-random numbers
that was being generated when the file was created.

2. TMR hybrid.ctmc

This file, which for a model named name will be called name.ctmc, will be created after
generating a compact description of the rewarded CTMC with vanishing states deleted and
will contain the description in textual form. Section C.2 provides a detailed description of
the contents of this file.

Assuming we want to compute a measure using numerical methods, the interaction would look
like:

Tasks

1. Compute a measure using numerical methods.

2. Estimate a measure using simulation.

3. Generate a verbose description of the

rewarded CTMC.

4. Generate a compact description of the

rewarded CTMC.

18 1 A Tutorial

Option (1-4)? 1

After that, we would be asked to select the measure to be computed, the numerical method to
be used, and the values of the control parameters associated with that numerical method. (See
Section 4 for a description of the numerical methods and measures offered by the tool.) Assum-
ing that we chose the measure “Expected Transient Reward Rate”, selected the numerical
method “Standard Randomization with control of the Relative Error”, and set the
allowed relative error and the allowed CPU time to, respectively, 10−6 and 10 s,8 the interaction
would look like:

Measures

1. Expected Transient Reward Rate (ETRR(t)).

2. Expected Steady-State Reward Rate (ESSRR).

3. Expected Averaged Reward Rate (EARR(t)).

4. Cumulative Reward Complementary

Distribution (CRCD(t,s)).

5. Interval Availability Complementary

Distribution (IAVCD(t,p)).

6. Expected Cumulative Reward Till Exit of a

subset of states (ECRTE).

7. Cumulative Reward Distribution Till Exit

of a subset of states (CRDTE(s)).

Option (1-7)? 1

Numerical methods

1. Standard Randomization.

2. Standard Randomization with control of the

Relative Error.

3. Randomization with Stationarity Detection.

4. Randomization with Quasistationarity

Detection.

5. Regenerative Randomization.

6. Regenerative Randomization with Laplace

Transforms.

7. Bounding Regenerative Randomization.

8. Explicit Runge-Kutta ODE Solver.

9. Implicit Runge-Kutta ODE Solver.

Option (1-9)? 2

Allowed relative error (> 0)? 1e-6

Allowed CPU time in s (> 0)? 10

After that, we would be asked to define the set of time abscissae t at which the measure has to be
computed. In general, sets of abscissae are defined as follows. First, we give the number, n, of
abscissae. If n = 1, we give the value of the single abscissa; if n > 1, we specify the set of values

8The allowed CPU must be always given as an integer number of seconds.

1.3 Model Execution 19

using either a linearly or logarithmically scaled grid of abscissae or an arbitrary, not necessarily
sorted, list of abscissae. In the first case (linearly or logarithmically scaled grid), we give the
smallest and largest abscissae. Denoting them by, respectively, am and aM, the measure will be
computed at the abscissae am+(i−1)(aM−am)/(n−1), i = 1, . . . , n if the grid is linearly scaled
and at the abscissae am

n−1
√
(aM/am)(i−1), i = 1, . . . , n if the grid is logarithmically scaled. In

the second case (list), the values making up the list are given separated by commas. To illustrate,
the interaction would look like:

Number of abscissae (>= 1)? 1

Abscissa (>= 0)? 100

if we selected to compute the measure at the single abscissa t =100, would look like:

Number of abscissae (>= 1)? 3

Lin. scaled grid, log. scaled grid or list of values (n/N/g/G/s/S)? n

Initial abscissa (>= 0)? 100

Final abscissa (> initial abscissa)? 1000

if we selected to compute the measure at a grid of three linearly scaled abscissae with minimum
value 100 and maximum value 1,000, and would look like:

Number of abscissae (>= 1)? 3

Lin. scaled grid, log. scaled grid or list of values (n/N/g/G/s/S)? s

Comma-separated list of non-negative values? 100, 750, 1e3

if we selected to compute the measure at the list of abscissae t =100, 750, 1,000.
Finally, we would be asked whether we want a verbose or a concise output:

Verbose output (y/Y/n/N)?

Assuming verbose output were selected and that a grid of three linearly scaled abscissae with min-
imum value 100 and maximum value 10,000 were specified, the tool would write to the standard
output:9

Generation:

CTMC characteristics:

states=5

classes of states=5

(# transient=4, # recurrent=1)

transition rates=7

Spent time in s (user, system, total)=0.000000E+00, 0.000000E+00, 0.000000E+00

Solution:

steps=1.600000E+01

Spent time in s (user, system, total)=0.000000E+00, 0.000000E+00, 0.000000E+00

Results:

9CPU times may differ from those given here.

20 1 A Tutorial

t=1.000000000000000E+02 ETRR(t)=9.998992016713486E-01

t=5.050000000000000E+03 ETRR(t)=9.145616142776791E-01

t=1.000000000000000E+04 ETRR(t)=6.382929169534498E-01

Total time in s (user, system, total)=0.000000E+00, 4.000000E-03, 4.000000E-03

[metfac2 warning 1] Vanishing states have been deleted.

There were 5 vanishing states.

whereas if concise output were selected, the tool would write to the standard output:

Results:

t=1.000000000000000E+02 ETRR(t)=9.998992016713486E-01

t=5.050000000000000E+03 ETRR(t)=9.145616142776791E-01

t=1.000000000000000E+04 ETRR(t)=6.382929169534498E-01

Total time in s (user, system, total)=4.000000E-03, 0.000000E+00, 4.000000E-03

[metfac2 warning 1] Some states have been deleted.

There were 5 vanishing states.

In either case, those outputs together with the date and time of compilation and execution as well
as the values of the model parameters would also be written to the file TMR hybrid.log.

If we wanted to estimate the measure using simulation, we would execute TMR hybrid, in-
troduce the numerical values of the model parameters, choose the task “Estimate a measure

using simulation”, choose the measure “Expected Transient Reward Rate”, and select
the only available simulation method for that measure. The interaction would look like:

Model parameters

LD_M: 1e-4

LD_R: 1e-6

THETA: 0.2

Tasks

1. Compute a measure using numerical methods.

2. Estimate a measure using simulation.

3. Generate a verbose description of the

rewarded CTMC.

4. Generate a compact description of the

rewarded CTMC.

Option (1-4)? 2

Measures

1. Expected Transient Reward Rate (ETRR(t)).

2. Expected Steady-State Reward Rate (ESSRR).

3. Expected Averaged Reward Rate (EARR(t)).

1.3 Model Execution 21

4. Cumulative Reward Complementary

Distribution (CRCD(t,s)).

5. Interval Availability Complementary

Distribution (IAVCD(t,p)).

6. Expected Cumulative Reward Till Exit of a

subset of states (ECRTE).

7. Cumulative Reward Distribution Till Exit

of a subset of states (CRDTE(s)).

Option (1-7)? 1

Simulation methods

1. Independent Realizations with Forced

Transitions of the Reward Rate.

Option (1-1)? 1

After that, we would introduce the values of the control parameters associated with that method.
Those values are: The confidence level as a decimal value, the allowed relative half-width of the
confidence interval, whether the pseudo-random number generator is to be initialized using a seed
or else the generator’s state is to be restored from a file generated in a previous simulation (see
page 17), the value of the seed or the name of the file, the allowed number of forced transitions, the
minimum number of realizations with positive estimator, and the allowed CPU time in seconds.
Assuming that we set the confidence level and relative half-width to, respectively, 0.99 and 0.01,
chose starting the pseudo-random number generator using the default seed, set both the allowed
number of forced transitions and the minimum number of realizations with positive estimator to
10,000, and set the allowed CPU time to 10 s, the interaction would look like:

Confidence level (> 0, < 1)? 0.99

Relative half-width of the confidence interval (> 0)? 0.01

Pseudo-random number generator: Initialize using seed or restore state from file (s/S/f/F)? s

Seed (>= 1; hit enter key to choose the default: 5489)?

Allowed number of forced transitions (>= 0)? 10000

Minimum number of realizations with positive estimator (>= 2)? 10000

Allowed CPU time in s (> 0)? 10

Finally, we would be asked to specify the time abscissa and select between verbose and concise
output. Assuming we set the time abscissa to 10,000 and chose verbose output, the interaction
would look like:

Abscissa (> 0)? 1e4

Verbose output (y/Y/n/N)? y

After performing the simulation, the tool would write to the standard output:10

Simulation:

10CPU times may differ from those given here.

22 1 A Tutorial

Spent time in s (user, system, total)=6.000400E-02, 0.000000E+00, 6.000400E-02

Results:

t=1.000000000000000E+04 ETRR(t)=6.853991596638668E-01 [+/- 6.853027385660408E-03]

Total time in s (user, system, total)=6.800400E-02, 0.000000E+00, 6.800400E-02

Two important remarks are in order here. The first remark is that the results of a simulation
are always given as

value1 [+/- value2] ,

where value1 is the computed estimate and value2 is the half-width of the computed confidence
interval with confidence level the one given by the user. The second remark is that what we have
computed for the TMR hybrid example is an estimate for the measure “Expected Transient Reward
Rate” at t = 10, 000 with the following initial probability distribution: initial probability equal to
1 for the start state and equal to 0 for the remaining states, i.e., assuming that with probability
1 the system is initially in the state with no processing module failed. (We recall that when a
measure is estimated using simulation, the specification of the initial probability distribution has
no effect.) Therefore, if we wanted to estimate the measure at t = 10, 000 assuming that the
system is initially in the state with no processing module failed with probability 0.75 and in the
state with one processing module failed with probability 0.25, we would have to:

1. Modify TMR hybrid.spec, replacing “start_state NA=3, NUS=2, R=yes” by
“start_state NA=3, NUS=1, R=yes”, compile the model, and execute it with the
same settings as before save that we would restore the state of the pseudo-random number
generator using the file TMR hybrid.rng. The result could be:

Simulation:

Spent time in s (user, system, total)=1.600100E-01, 4.000000E-03, 1.640100E-01

Results:

t=1.000000000000000E+04 ETRR(t)=5.043266506363613E-01 [+/- 5.040119544597909E-03]

Total time in s (user, system, total)=1.640100E-01, 4.000000E-03, 1.680100E-01

2. Estimate the measure by adding the new estimate (5.043266506363613E-01) times 0.25
and the previous one (6.853991596638668E-01) times 0.75, getting 0.64. We note that
this result is in accordance with the value of the measure at t = 10, 000 obtained using a
numerical method (see page 20).

Finally, if we wanted to generate a compact description of the rewarded CTMC with vanishing
states deleted, we would execute TMR hybrid, introduce the numerical values of the model param-
eters, and choose the task “Generate a compact description of the rewarded CTMC”.
The interaction would look like:

1.3 Model Execution 23

Model parameters

LD_M: 1e-4

LD_R: 1e-6

THETA: 0.2

Tasks

1. Compute a measure using numerical methods.

2. Estimate a measure using simulation.

3. Generate a verbose description of the

rewarded CTMC.

4. Generate a compact description of the

rewarded CTMC.

Option (1-4)? 4

The description would be written in textual form to the file TMR hybrid.ctmc. (For a model
named name, that file would be called name.ctmc —see Section C.2, page 99 for a detailed
description of the contents of that file.)

24 1 A Tutorial

Section 2

Model Specification Language

This section describes in detail the lexis, syntax, and semantics of the model specification language
based on production rules that is supported by METFAC-2.1.

2.1 Lexis

Syntactic elements of the language include keywords, numerical constants, operators, identifiers,
and delimiters. Comments are enclosed by /* and */ and cannot be nested. Syntactic elements
can be separated by any number of white spaces, tabs, or newline characters. The language is case
sensitive.

The keywords of the language are the following:

action int start_state

double next_state state_variables

end no with_prob

external parameters with_rate

if production_rules yes

infinity response

initial_probability reward_rate

Reserved words are the keywords of the language, words ending in an underscore, and the words:

DECLARE_SYMBOLS check_state regstat

block pivot subset

Valid numerical constants are decimal and floating-point constants given in the usual way (e.g.
15, -27, 1.415, -1.27e-5, 1.12E6, etc). Moreover, the language supports the constants yes and
no, standing for, respectively, the integer values 1 and 0.

The language supports the following subset of operators taken from the C programming lan-
guage:

arithmetic assignment operators: =, +=, -=, *=, /=

26 2 Model Specification Language

relational operators: >, >=, <, <=, ==, !=

binary arithmetic operators: +, -, *, /

logical operators: &&, ||, !

increment operator: ++

decrement operator: --

unary plus operator: +

unary minus operator: -

cast operator: ()

Precedence and associativity of the operators are as in C.
Identifiers consist of any sequence of letters, digits, and underscores beginning with a letter or

an underscore. Identifiers may or may not have semantic value. Identifiers with semantic value are
parameters, state variables, and model-specific function identifiers. Identifiers without semantic
value are action and response identifiers. Identifiers with semantic value must be different from
any reserved word. Identifiers without semantic value must be different from any keyword.

The delimiters of the language are parenthesis and commas.

2.2 Syntax and Semantics

The syntax of the language will be described in Extended BNF (EBNF). We recall that, in EBNF,
the comma indicates concatenation, vertical bars | separate alternatives, square brackets [] indicate
zero or one occurrence of what they surround, curly braces { } indicate zero or more occurrences
of what they surround, curly braces followed by a plus sign { }+ indicate one or more occurrences
of what they surround, parentheses () group what they surround, and literal text is enclosed with
double quotes like “this”. For the sake of clarity, the keywords and operators of the language will
be written in typewriter font like this and identifiers will be written in bold font like this. We
give next an EBNF description of the model specification language up to the level of expression
and model-specific succinct function prototype. The syntax of model-specific succinct function
prototypes and expressions will be discussed afterwards.

spec-file = dec, exec;
dec = par-dec | sv-dec | ext-dec | (dec, par-dec) | (dec, sv-dec)

| (dec, ext-dec);
exec = pr-spec | ss-spec | rr-spec | ip-spec | (exec, pr-spec) | (exec, ss-spec)

| (exec, rr-spec) | (exec, ip-spec);
par-dec = ”parameters”,

(”int” | ”double”), id, {”,”, (id | ((”int” | ”double”), id))};
sv-dec = “state variables”,

id, {”,”, id};
ext-dec = ”external”,

(”int” | ”double”), func-proto,

2.2 Syntax and Semantics 27

{”,”, (func-proto | ((”int” | ”double”), func-proto))};
pr-spec = ”production rules”,

{[”if”, exp], ”action”, [label], ”with rate”, (exp | ”infinity”),
”(next state”, chg-exp, {”,”, chg-exp})
| ({[”if”, exp], ”response”, [label], [”with prob” exp],

”next state” chg-exp, {”,”, chg-exp}}+,
”end”
)

}+;
ss-spec = ”start state”,

init-exp, {”,”, init-exp};
rr-spec = ”reward rate”,

exp;
ip-spec = ”initial probability”,

exp;

where
id is an identifier with semantic value,

label is an identifier without semantic value,

func-proto is a model-specific succinct function prototype, and

exp, chg-exp, init-exp are expressions.

The syntax in EBNF for a model-specific succinct function prototype is as follows:

func-proto = id, ”(”, [(”int” | ”double”), {”,”, (”int” | ”double”)}]”)”;

Finally, the syntax in EBNF for expressions is as follows:

chg-exp = sv-id, (post-op | (ass-op, exp));
init-exp = sv-id, “=”, restrict-exp;
post-op = “++” | “--”;
ass-op = “=” | “+=” | “-=” | “*=” | “/=”;
exp = and-exp | (exp, or-op, and-exp);
restrict-exp = restrict-and-exp | (restrict-exp, or-op, restrict-and-exp);
and-exp = eq-exp | (and-exp, and-op, eq-exp);
restrict-and-exp = restrict-eq-exp | (restrict-and-exp, and-op, restrict-eq-exp);
eq-exp = rel-exp | (eq-exp, eq-op, rel-exp);
restrict-eq-exp = restrict-rel-exp | (restrict-eq-exp, eq-op, restrict-rel-exp);
rel-exp = arith-exp | (rel-exp, rel-op, arith-exp);
restrict-rel-exp = restrict-arith-exp | (restrict-rel-exp, rel-op, restrict-arith-exp);
arith-exp = mult-exp | (arith-exp, add-op, mult-exp);
restrict-arith-exp = restrict-mult-exp | (restrict-arith-exp, add-op, restrict-mult-exp);
mult-exp = cast-exp | (mult-exp, mult-op, cast-exp);

28 2 Model Specification Language

restrict-mult-exp = restrict-cast-exp | (restrict-mult-exp, mult-op, restrict-cast-exp);
cast-exp = unary-exp | (“(“, type, “)”, cast-exp);
restrict-cast-exp = restrict-unary-exp | (“(“, type, “)”, restrict-cast-exp);
unary-exp = sv-id | par-id

| (func-id, [“(“[exp, {“,”, exp}]”)”])
| cntnd | (“(“, exp, “)”) | (unary-op, cast-exp);

restrict-unary-exp = par-id
| (func-id, [“(“[restrict-exp, {“,”, restrict-exp}]”)”]) |
cntnd | (“(“, restrict-exp, “)”) | (restrict-unary-op, restrict-cast-exp);

cntnd = “yes” | “no” | numcons;
type = “int” | “double”;
or-op = “||”;
and-op = “&&”;
eq-op = “==” | “!=”;
rel-op = “<” | “<=” | “>” | “>=”;
add-op = “+” | “-”;
mult-op = “*” | “/”;
unary-op = “+” | “-” | “!”;

where
sv-id is a state variable identifier

par-id is a parameter identifier

func-id is the identifier of either a model-specific function de-
clared within the external construct or a supported
standard C function (see Table 2.1), and

numcons is a valid numerical constant.

Semantic restrictions of the language not captured by the previous descriptions are the follow-
ing:

• There can be at most one declaration of parameters or model-specific functions.

• There must be one and only one declaration of state variables.

• There must be one and only one specification of production rules.

• Instantaneous actions (those in which the keyword with rate is followed by the keyword
infinity) must have a condition and must not have responses.

• Each state variable may change its value at most once within the same next state con-
struct.

• There must be one and only one specification of the start state and such a specification must
be such that each state variable is initialized once and only once.

• There must be one and only one specification of the reward rate structure.

2.2 Syntax and Semantics 29

Table 2.1: Supported standard C functions.

prototype description
double acos(double x) principal value of the arc cosine of x
double asin(double x) principal value of the arc sine of x
double atan(double x) principal value of the arc tangent of x
double atan2(double x, double y) principal value of the arc tangent of y/x
double ceil(double x) smaller integer non smaller than x

double cos(double x) cosine of x (x measured in radians)
double cosh(double x) hyperbolic cosine of x
double exp(double x) exponential function of x
double fabs(double x) absolute value of x
double floor(double x) largest integer non greater than x

double fmod(double x, double y) remainder of x/y
(sign equal to that of x)

double log(double x) natural logarithm of x
double log10(double x) base-ten logarithm of x
double pow(double x, double y) x raised to the power of y
double sin(double x) sine of x (x measured in radians)
double sinh(double x) hyperbolic sine of x
double sqrt(double x) nonnegative square root of x
double tan(double x) tangent of x (x measured in radians)
double tanh(double x) hyperbolic tangent of x

• There can be at most one specification of the initial probability distribution.

• The number and type of the arguments of a model-specific function must match its succinct
prototype.

• The number and type of the arguments of a supported standard C function must match the
prototype given in Table 2.1.

• The type of the result of the expressions following the keywords with rate, with prob,
reward rate, and initial probability must be double.1

• The type of the result of the expressions following the operators =, +=, -=, *=, and /= must
be int.

1The type of the result of an expression is determined as in C.

30 2 Model Specification Language

Section 3

Model Debugging

METFAC-2.1 provides two mechanisms for model debugging. The first mechanism consists in
checking assertions on the descriptions in terms of the values of the state variables of the generated
or sampled states using a function with predefined name and prototype called check state. The
definition of that function has to be included in the optional C file of a model specification. The
prototype of the function is:

int check_state(int sv[], int ipar[], double dpar[])

where
sv[] holds, starting at location 0, the values of the state variables, given in the order

they have been declared in the model specification file;

ipar[] holds, starting at location 0, the values of the int parameters, given in the order
they have been declared in the model specification file;

dpar[] holds, starting at location 0, the values of the double parameters, given in the
order they have been declared in the model specification file.

Inclusion of the statement “DECLARE SYMBOLS;” in the declarative part of the function allows the
use in its body of the names of the state variables and parameters declared in the model specifica-
tion file.1 We recall that to be able to use that statement, the optional C file of the model specifi-
cation, name.c, where name is the model name (TMR hybrid for the example of Section 1), has
to include the header file mod.h that is generated automatically when the model is successfully
compiled.

The function check state is invoked for every generated or sampled state, and an error oc-
curs if the function returns 0 for some state. If the optional C file of the model specification does
not include a definition for the function or the model specification does not include a C file, a
default check state function that returns 1 for each state is used.

A possible check state function for the TMR hybrid example described in Section 1 is:

1DECLARE SYMBOLS is a C macro that defines local variables with the names of the state variables and the parameters
of the model specification and assigns to the former elements of the array sv[] and to the latter elements of the arrays
ipar[] and dpar[] (see Section B.2, page 92).

32 3 Model Debugging

int

check_state(int sv[], int ipar[], double dpar[])

{

DECLARE_SYMBOLS;

if (NA < 0 || NA > 3 || NUS < 0 || NUS > 2

|| (R != 1 && R != 0))

return 0;

else

return 1;

}

Alternatively, that function could be defined without making use of the C macro
DECLARE SYMBOLS as follows:

int

check_state(int sv[], int ipar[], double dpar[])

{

if (sv[0] < 0 || sv[0] > 3 || sv[1] < 0 || sv[1] > 2

|| (sv[2] != 1 && sv[2] != 0))

return 0;

else

return 1;

}

To illustrate the use of the assertion-checking mechanism, let us assume that the previous
check state function has been defined in the optional C file of the TMR hybrid example and
that the third production rule of the example, which models the failure of an active processing
module, and should read as

if sys_up(NA, R) action FAIL_ACTIVE with_rate NA*LD_M

if NUS>0 response CONTINUE

next_state NUS--

if NUS==0 response DUPLEX

next_state NA--

end

has been actually typed as

if sys_up(NA, R) action FAIL_ACTIVE with_rate NA*LD_M

if NUS>=0 response CONTINUE

next_state NUS--

if NUS==0 response DUPLEX

next_state NA--

end

i.e., we have mistakenly typed “NUS>=0” instead of “NUS>0” as condition of the first response.
After compiling the example and running TMR hybrid.exe with the same input as in Section 1.3,
we would get on the standard error stream (usually the computer terminal) the following error
messages and the execution would be aborted without computing the measure:

[metfac2 error 1] Wrong state.

State (8):

NA=3, NUS=-1, R=1

reached from state (6):

33

NA=3, NUS=0, R=1

through response=1 of action=3.

[metfac2 error 2] Wrong state.

State (10):

NA=3, NUS=-1, R=0

reached from state (8):

NA=3, NUS=-1, R=1

through response=1 of action=1.

The second mechanism implemented in METFAC-2.1 for model debugging is the generation
in textual format of a verbose description of the rewarded CTMC. The description is written in the
file name.log, where name is the name of the model (TMR hybrid for the example of Section 1).
This is task number 3 in the interaction shown on page 18. The description includes, for each state,
the state index,2 the values of the state variables, the initial probability of the state, the reward rate
of the state, whether the state is vanishing, whether the state is absorbing, the value returned by
the function block for the state (see Section 4.2, page 47), called “block index” in the file, the
pivot flag, which is equal to ”yes” if the state has been selected as a “pivot” state (see Section 4.2,
page 49) and is equal to ”no” otherwise, and the regenerative flag, which is equal to ”yes” if the
state has been selected as the “regenerative” state (see Section 4.1, page 41) and is equal to ”no”
otherwise. In addition, for each state the description includes the list of the pairs action-response
and instantaneous action-response that are enabled in the state, giving for each pair the identifier
and index of the action or instantaneous action, the identifier and index of the response,3 the index
of the reached state, and the value of the corresponding transition rate or the string “+infinity”
if the action is instantaneous. Section C.1 of Appendix C defines formally the description of the
rewarded CTMC included in the file name.log.

Since generating a verbose description of the rewarded CTMC is intended for model debug-
ging, the user is allowed to set a limit on the number of states the CTMC may have (a faulty model
description may easily result in a CTMC with a very large state space or even a CTMC with in-
finite number of states). Then, to generate that description, the user has to execute the model,
introduce the numerical values of the model parameters, choose the task “Generate a verbose des-
cription of the rewarded CTMC”, and set the maximum number of states. Thus, for the example
TMR hybrid.log, assuming the assignments λM = 10−4 h−1, λR = 10−6 h−1, and θ = 0.2 and
assuming that the user chose to set to 1, 000 the maximum number of states the rewarded CTMC
may have, the interaction would look like

Model parameters

LD_M: 1e-4

LD_R: 1e-6

THETA: 0.2

2States are numbered consecutively starting at 1, following the order in which they are created.
3Actions, instantaneous actions, and responses without identifier are regarded as having the identifier “nolabel”;

actions without responses and instantaneous actions are always dealt with as having one response which is always
enabled and has identifier “nolabel” and probability equal to 1. Actions and instantaneous actions are indexed 1, 2,
. . . in the order they appear in the model specification file. Responses are indexed 1, 2 . . . within each action in the order
they appear in the model specification file.

34 3 Model Debugging

Tasks

1. Compute a measure using numerical methods.

2. Estimate a measure using simulation.

3. Generate a verbose description of the

rewarded CTMC.

4. Generate a compact description of the

rewarded CTMC.

Option (1-4)? 3

Maximum number of states (>=1; hit enter key to choose

the default: 2147483647)? 1000

A sketch of the contents of the file TMR hybrid.log follows:

Model compiled on Feb 4 2012 at 17:36:03.

Model executed on Feb 4 2012 at 17:36:25.

Parameters:

LD_M=1.000000E-04

LD_R=1.000000E-06

THETA=2.000000E-01

Generation:

CTMC characteristics:

(Warning: vanishing and unreachable states, self transitions, and

null transition rates are included)

states=10

(# vanishing_states=5)

transition rates=13

Spent time in s (user, system, total)=0.000000E+00, 0.000000E+00, 0.000000E+00

description of states

state=1

NA=3, NUS=2, R=1

initial_probability=7.500000E-01

reward_rate=1.000000E+00

vanishing=no

absorbing=no

block_index=0

pivot_flag=no

regenerative_flag=no

...

state=4

NA=0, NUS=0, R=0

35

initial_probability=0.000000E+00

reward_rate=0.000000E+00

vanishing=no

absorbing=yes

block_index=0

pivot_flag=no

regenerative_flag=no

...

state=10

NA=1, NUS=0, R=1

initial_probability=0.000000E+00

reward_rate=0.000000E+00

vanishing=yes

absorbing=no

block_index=0

pivot_flag=no

regenerative_flag=no

action-response and instantaneous action-response pairs

state=1

action=FAIL_RESTORE(1)

response=nolabel(1)

next_state=2

transition_rate=1.000000E-06

action=FAIL_SPARE(2)

response=nolabel(1)

next_state=3

transition_rate=4.000000E-05

action=FAIL_ACTIVE(3)

response=CONTINUE(1)

next_state=3

transition_rate=3.000000E-04

...

state=4

no action-response or instantaneous action-response pair is enabled in this state

...

state=10

instantaneous_action=MERGE(4)

response=nolabel(1)

next_state=4

transition_rate=+infinity

states=10

(# absorbing_states=1, # vanishing_states=5)

Total time in s (user, system, total)=4.000000E-03, 4.000000E-03, 8.000000E-03

36 3 Model Debugging

To ease model debugging, the description includes vanishing states, unreachable states,4 self-
transitions, and null transition rates. However, if the user-given limit on the number of states is
reached, then the description is generated up to the point of reaching (approximately) that limit,
an error is reported to the standard error output, and the string “ABORTED!” is added to the file
name.log. Also, if there is a state for which any of the following conditions hold:

1. the function check state returns 0 for the state;

2. it is the state specified by means of the start state construct and one or more instanta-
neous actions are enabled in it; or

3. it is not the state specified by means of the start state construct and two or more instan-
taneous actions are enabled in it;

then the description is generated up to such a state, an error is reported to the standard error output,
and the string “ABORTED!” is added to the file name.log.

4A non-vanishing state i of a CTMC X is said to be unreachable if P [X(t) = i] = 0 for all t ≥ 0. A necessary
and sufficient condition for that is that the initial probability of the state be null and there does not exist any path in the
transition diagram of the CTMC from some state with nonnull initial probability to that state.

Section 4

Measures

METFAC-2.1 offers the following seven reward measures:

• Expected Transient Reward Rate (ETRR(t)).

• Expected Steady-State Reward Rate (ESSRR).

• Expected Averaged Reward Rate (EARR(t)).

• Cumulative Reward Complementary Distribution (CRCD(t, s)).

• Interval Availability Complementary Distribution (IAVCD(t, p)).

• Expected Cumulative Reward Till Exit of a subset of states (ECRTE).

• Cumulative Reward Distribution Till Exit of a subset of states (CRDTE(s)).

In this section, we will define all those measures, describing the numerical and simulation methods
offered by the tool to, respectively, compute and estimate each measure. Among the numerical
methods, some can only be applied on rewarded CTMCs fulfilling some conditions, which will
be clearly identified. To fully understand them, though, the reader must take account of the fact
that in METFAC-2.1, computing a measure using numerical methods involves the following steps,
which are carried out in order:

1. Generation.

The rewarded CTMC that results from the model specification is generated. During the
generation, it is checked that:

• the function check state returns a value ̸= 0 for every state;

• no instantaneous action gets enabled in the state specified by means of the
start state construct and at most one instantaneous action gets enabled in any other
state;

• the reward rate of every vanishing state is a finite C double;1

1I.e., it is neither infinite nor a “not-a-number”.

38 4 Measures

• the rate of every (non instantaneous) action that gets enabled in a state is a finite C
double > 0;

• the probability of every response that gets enabled in a state is > 0 and ≤ 1;

• for each (non instantaneous) action-response pair that gets enabled in a state, the prod-
uct of the action’s rate and the response’s probability is a finite C double > 0;

• there are not self-transitions; and

• the initial probability of every state is ≥ 0 and ≤ 1.

If any of the above tests fails, an error occurs and the execution is aborted with an explana-
tory message.

2. Elimination of vanishing states.

If the rewarded CTMC has vanishing states, it is checked that no cycle of vanishing states
exists.2 If it does, then an error occurs and the execution is aborted with an explanatory mes-
sage. Otherwise, vanishing states are “eliminated” using a variant of Gaussian elimination
without subtractions and a warning is issued.

3. Verification of initial probabilities.

If the difference, in absolute value, between the sum of the initial probabilities of the states
of the rewarded CTMC with vanishing states eliminated and 1 is larger than 50,000 times
the “epsilon” constant of the underlying hardware,3 then a warning is issued.

4. Reachability test.

If one or more states of the rewarded CTMC with vanishing states eliminated are unreach-
able,4 the execution is aborted with an explanatory message.

5. Measure-specific tests.

If the measure is not well-defined for the rewarded CTMC with vanishing states eliminated
or that rewarded CTMC does not fulfill some of the assumptions on which the computation
of the measure relies, the execution is aborted with an explanatory message.

6. Computation.

The measure is computed using the selected numerical method(s).

In the remaining of this section, we will use the following notation.

X(v) Finite rewarded CTMC that results from the model specification, i.e., with
vanishing states not eliminated. If the measure is to be computed using nu-
merical methods, the initial probability distribution is the one specified by
means of the initial probability construct (see Section 1.1.1, page 9).
If the specification is absent or the measure is to be estimated using simu-
lation, the initial probability distribution is: Initial probability equal to 1 for

2A cycle of vanishing states is a set of states mutually reachable via instantaneous actions.
3The “epsilon” constant is the difference between the smallest exactly representable number greater than 1 and 1.
4A non-vanishing state i of a CTMC X is said to be unreachable if P [X(t) = i] = 0 for all t ≥ 0.

39

the state specified by means of the start state construct and equal to 0
for the remaining states.

Ω(v) State space of X(v).

λ
(v)
i,j Transition rate of X(v) from state i to state j, i, j ∈ Ω(v). (If state i is

vanishing, then
∑

k ̸=i λ
(v)
i,k = +∞ and there exists one and only one state k

such that λ(v)
i,k = +∞.)

r
(v)
i Reward rate of state i ∈ Ω(v).

X Finite rewarded CTMC that results from the model specification with van-
ishing states eliminated.

Ω State space of X .

α Initial probability distribution column vector of X: (αi)i∈Ω, αi =

P [X(0) = i].

ri Reward rate of state i ∈ Ω.

A Infinitesimal generator of X: (ai,j)i,j∈Ω. For i ̸= j, ai,j = λi,j , where
λi,j is the transition rate of X from state i to state j; ai,i = −λi, where
λi =

∑
k∈Ω,k ̸=i λi,k is the output rate of X from state i.

AB,B′
Block of A including the elements ai,j , i ∈ B, j ∈ B′, B,B′ ⊂ Ω:
(ai,j)i∈B,j∈B′ .

diag
(
AB,B′)

Matrix with same diagonal elements as AB,B′
and null off-diagonal ele-

ments.

λi,B
∑

j∈B λi,j , B ⊂ Ω− {i}.

αB
∑

i∈B αi.

αB (αi)i∈B , B ⊂ Ω.

p(t) Probability distribution column vector of X at time t: (pi(t))i∈Ω, pi(t) =

P [X(t) = i].

I Identity matrix of appropriate dimensions.

0 Column vector of appropriate dimension with all its elements equal to 0.

1 Column vector of appropriate dimension with all its elements equal to 1.

1c Indicator function returning value 1 when condition c is satisfied and value
0 otherwise.∥∥·∥∥

1
One norm.∥∥·∥∥

2
Two norm.∥∥·∥∥F Frobenius norm.

40 4 Measures

∣∣·∣∣ Absolute value or cardinality.

4.1 Expected Transient Reward Rate

The measure is defined as the expected value of the random variable “reward rate at time t”.
Formally,

ETRR(t) = E
[
rX(t)

]
.

It is assumed that the reward rate of each state of X is ≥ 0. That restriction can be, however,
circumvented by shifting otherwise the reward rates by a positive amount d so that the new reward
rates r′i = ri + d are all ≥ 0. The expected transient reward rate of X is related to the expected
transient reward rate measure, ETRR′(t), of the rewarded CTMC with shifted reward rates by
ETRR(t) = ETRR′(t) − d. Rewarded CTMCs with impulse rewards ri,j that are earned each
time X makes a transition from state i to state j can be also accommodated by adding the con-
tribution λi,jri,j to the reward rate associated with state i. The mapping requires redefining the
ETRR(t) measure as

ETRR(t) = lim
∆t→0+

E[reward accumulated by X in [t, t+∆t]]

∆t

and is justified in Appendix E.
As an example of the measure, assume that X models a fault-tolerant system that can be either

up or down, and that a reward rate 1 is assigned to the states of X in which the system is up and a
reward rate 0 is assigned to the states of X in which the system is down. Then, ETRR(t) would
be the availability of the system at time t (probability that the system is up at time t).

Available numerical methods for computing this measure are:

• Standard Randomization (SR).

• Standard Randomization with control of the Relative Error (SRRE).

• Randomization with Stationarity Detection (RSD).

• Randomization with Quasistationarity Detection (RQSD).

• Regenerative Randomization (RR).

• Regenerative Randomization with Laplace Transform Inversion (RRLT).

• Bounding Regenerative Randomization (BRR).

• Explicit Runge-Kutta ODE Solver (ERKODES).

• Implicit Runge-Kutta ODE Solver (IRKODES).

Methods SR and SRRE are directly based on the interpretation of X in terms of a Poisson
process and a randomized discrete-time Markov chain (see Appendix F). The first of such methods
is quite standard and is implemented in METFAC-2.1 as described in [1]. The second method is
more elaborated and is described in detail in [2]. The difference between these methods is that

4.1 Expected Transient Reward Rate 41

in SR the measure is computed with control of the absolute error while in method SRRE what is
controlled is the relative error.

Method RSD combines the randomization interpretation with stationarity detection and is de-
scribed in [3].

Method RQSD combines the randomization interpretation with quasistationarity detection and
is described in [4].

Methods RR and RRLT follow a different approach [5, 1, 6]. In these methods, a truncated
transformed rewarded CTMC model Y is obtained from X of (hopefully) smaller size by char-
acterizing with enough accuracy the behavior of X till the time it hits a “regenerative” state and
between consecutive hits to that state. The rewarded CTMC model Y , which has with some ar-
bitrarily small error the same ETRR(t) measure as X , is then solved either using the SR method
(RR) or using a numerical Laplace transform inversion algorithm on a closed-form Laplace trans-
form solution of Y (RRLT). The regenerative state is selected by the user using the function with
predefined name and prototype regstat whose definition has to be included in the optional C file
of a model specification. The prototype of that function is:

int regstat(int sv[], int ipar[], double dpar[], long index)

where

sv[] holds, starting at location 0, the values of the state variables, given in the order
they have been declared in the model specification file;

ipar[] holds, starting at location 0, the values of the int parameters, given in the order
they have been declared in the model specification file;

dpar[] holds, starting at location 0, the values of the double parameters, given in the
order they have been declared in the model specification file;

index holds the state index, which is equal to 1 for the state specified through the
start state construct.

Inclusion of the statement “DECLARE SYMBOLS;” in the declarative part of the function allows the
use in the body of the function of the names of state variables and parameters declared in the model
specification file. We recall that to be able to use that statement, the optional C file of the model
specification, name.c, name being the model name, has to include the header file name.h that is
generated automatically when the model is compiled. The function is invoked for every generated
state. The regenerative state will be the state of X for which the function returns a value different
from zero. (If a value different from zero is returned for more than one state or zero is returned
for every state, an error occurs.) If the optional C file of the model specification does not include a
definition for the function or the model specification does not include a C file, a default regstat
function that returns 0 for every state is used.

Method BRR [7] computes a lower bound, an upper bound, or both for ETRR(t) and also
requires the selection of a regenerative state. In the method, the transition rates from all states
except the regenerative state are scaled using a user-given equalization parameter and the resulting
rewarded CTMC is then solved using method RR. Of course, the advantage is that method BRR
can be much faster than method RR. The regenerative state has to be selected using the function
with predefined name and prototype regstat.

42 4 Measures

Unlike the previous methods, which are all based on the randomization interpretation, methods
ERKODES and IRKODES compute p(t) as the solution at τ = t of the linear ODE

dp(τ)

d τ
= ATp(τ) (4.1)

with the initial condition p(0) = α and next compute ETRR(t) =
∑

i∈Ω ripi(t). In method
ERKODES, the ODE (4.1) is solved using one of two explicit Runge-Kutta ODE solvers:
RK5(4)7M [8] and RK6(5)8M [9]. The respective orders are 5 and, for linear ODEs, 7, and
the user selects the ODE solver by choosing the order. In method IRKODES, the ODE (4.1) is
solved using the implicit Runge-Kutta ODE solver Radau IIA [10] with s = 2, 3, 4, 5, or 6 stages.
The respective orders are 2s − 1 = 3, 5, 7, 9, 11 and the user selects the number of stages by
choosing the order. The ODE solver Radau IIA is A- and L-stable. The solver has been imple-
mented along the lines of the 3-stage Radau IIA ODE solver described in [11, Sect. IV.8] with
two significant modifications: 1) The selection of the step size is based on a lower order method
developed following the methodology described in [12], and 2) using results from [13, 14, 15],
the involved linear systems are solved using the Gauss-Seidel and Bi-CGSTAB [16] methods with
strict control of the 1-norm of the error.

Methods SR, SRRE, ERKODES, and IRKODES can be used for any X . The remaining
methods are less general and require the following conditions to hold, where r denotes the chosen
regenerative state:

• Method RSD: X is irreducible.

• Method RQSD:

– The state space Ω of X is of the form Ω = S∪{f1, . . . , fA}, A ≥ 1, where all states in
S make up a single transient class of states and the states fi, 1 ≤ i ≤ A are absorbing
and have associated with them different reward rates.

– The sum of the initial probabilities of the states in S is > 0.

• Methods RR, RRLT:

C1. Ω = S ∪{f1, f2, . . . , fA},
∣∣S∣∣ ≥ 2, A ≥ 0, where either all states in S are transient or

S includes a single recurrent class of states C and the states fi are absorbing and have
associated with them different reward rates.

C2. r ∈ S.

C3. If S includes a single recurrent class of states C, r ∈ C.

C4. There exists some transition rate from r to some state in S − {r}.

• Method BRR: Conditions C1 through C4 above with A > 0 and the condition:

C5. All states in S have null reward rate.

Moreover, the equalization parameter, D, has to have a value satisfying 1 ≤ D <

maxi∈S−{r} λi/mini∈S−{r} λi. The bounds become tighter and computationally more
costly as D increases.

4.1 Expected Transient Reward Rate 43

To compute the measure ETRR(t) for a model named, say, “model”, the user has to follow
the following steps:

1. Compile the model by typing “m2build model”. (See Section 1.2, page 14.)

2. Execute the model by typing “model.exe” (see Section 1.3, page 16) and, then, in the
ensuing interaction:

(a) Assign values to the parameters of the model if any.

(b) Choose the task “Compute a measure using numerical methods”.

(c) Choose the measure “Expected Transient Reward Rate (ETRR(t))”.

(d) Choose the numerical method.

(e) Assign values to the parameters controlling the chosen numerical method. These pa-
rameters are, in the order in which the user will be prompted for them in the interaction:

• SR: Allowed absolute error and allowed CPU time in seconds (an integer value).

• SRRE: Allowed relative error and allowed CPU time in seconds.

• RSD, RQSD, RR: Allowed absolute error and allowed CPU time in seconds.

• RRLT: Absolute tolerance and allowed CPU time in seconds.

• BRR: Bounds that have to be computed (lower bound, upper bound or both),
equalization parameter (the larger the parameter, the tighter and more computa-
tionally costly the bounds will be), allowed absolute error, and allowed CPU time
in seconds.

• ERKODES: Order of the ODE solver (either 5 or 7), absolute tolerance, and
allowed CPU time in seconds.

• IRKODES: Order of the ODE solver (either 3, 5, 7, 9, or 11), absolute tolerance,
and allowed CPU time in seconds.

(f) Define the grid of time abscissae t at which the measure has to be computed. (See
Section 1.3, page 18.)

(g) Choose between verbose and concise output. (See Section 1.3, page 19.)

Comments:

• The tool checks automatically whether the selected method can be used and exits providing
an explanatory message if the method cannot.

• Neglecting round-off errors, in methods SR, SRRE, RSD, RQSD, RR, and BRR, the error
with which the measure or bounds for it are computed is guaranteed to be non greater than
the specified allowed error. In the remaining methods, the absolute error with which the
measure is computed can be larger than the specified absolute tolerance.5

5However, numerical experiments [6] seem to indicate that for method RRLT, the actual error is non greater than
the specified absolute tolerance.

44 4 Measures

• Let ρ = maxi∈Ω λitmax, where tmax is the largest value of t for which the measure has to
be computed. For small values of ρ, method ERKODES can be faster than the remaining
methods. For large values of ρ, methods RSD, RQSD, RR, RRLT, BRR, and IRKODES can
be significantly faster than methods SR, SRRE, and ERKODES (the CPU time required by
methods SR and SRRE is approximately directly proportional to ρ). For very large values
of ρ, method IRKODES can be the fastest one. Recall, however, than methods RSD, RQSD,
RR, RRLT, and BRR are less general than methods SR and SRRE, and that methods RRLT,
ERKODES, and IRKODES do not provide strict error control.

• Selecting an appropriate regenerative state for methods RR, RRLT, and BRR is a deli-
cate issue. As a general rule, the regenerative state should be a state visited often by the
randomized discrete-time Markov chain of X with randomization rate slightly larger than
maxi∈Ω λi. When the choice is not very clear, the user should be aware that a “bad” se-
lection for the regenerative state can degrade severely the performance of the methods. For
exact and bounding failure/repair rewarded CTMCs of fault-tolerant systems with exponen-
tial failure and repair time distributions and repair in every state with failed components
with failure rates much smaller than repair rates, a good choice for the regenerative state is
the state without failed components. For other types of models for which a good selection
for the regenerative state exists, see [5, 1, 6, 7].

• The method RRLT can be significantly less costly than the method RR when in the latter the
computational cost of the second phase of the method (solution of the truncated transformed
rewarded CTMC using method SR) dominates the computational cost of the first phase
(generation of the truncated transformed rewarded CTMC).

• For methods RR, RRLT, and BRR, the condition that there exist some transition rate from
the regenerative state, r, to some state in S −{r} (condition C4 on page 42) can be circum-
vented by adding a tiny transition rate λ ≤ (10−10ε)/(2rmaxtmax), where ε is the allowed
absolute error, rmax = maxi∈Ω ri, and tmax is the largest value of t for which the measure
has to be computed, with a negligible impact on the measure non greater than 10−10ε.

At present, only one simulation method is available for estimating the measure. In the inter-
action with the user, that method is listed under the name “Independent Realizations with

Forced Transitions of the Reward Rate”. The method consists in sampling realizations
of X(v) until: 1) the number of realizations for which the estimator of the measure is positive is non
smaller than a user-given value, and 2) the relative half-width of the standard normal approxima-
tion confidence interval is non larger than a user-given value. The samples are generated using the
interpretation of X(v) in terms of its embedded embedded (homogeneous) discrete-time Markov
chain (DTMC) described in Appendix F. We recall that the specification of the initial probabil-
ity distribution that can be optionally included in the model specification file (see Section 1.1.1,
page 9) has no effect and the initial probability distribution always used is: Initial probability equal
to 1 for the state specified by means of the start state construct (the “start state”) and equal
to 0 for the remaining states. Accordingly, each realization starts at the start state and ends when
the sum of the sampled sojourn times is non smaller than the time point of interest t. During a
realization, a transition is forced whenever: 1) the number of transitions that have been forced
up to that point throughout the simulation has not yet reached a user-given limit, 2) the current

4.1 Expected Transient Reward Rate 45

state, a, of the realization is neither absorbing nor vanishing, and 3) r(v)a = 0. If Ta < t denotes
the sum of the sampled sojourn times in the states of the current realization up to entry into state
a, the transition is forced by limiting the sojourn time in that state to t − Ta. This is achieved
by changing the probability distribution function of the random variable “sojourn time in state a”
from F (u) = 1−e−λ

(v)
a u, u ≥ 0, to F ′(u) = (1−e−λ

(v)
a u)/(1−e−λ

(v)
a (t−Ta)), 0 ≤ u ≤ t−Ta. For

each realization, the sample of the estimator is the reward rate of the last visited state multiplied,
if one or more transitions have been forced, by a factor that takes account of those forced transi-
tions. If F denotes the collection of (possibly repeated) states of the realization where transitions
have been forced, that factor is

∏
b∈F (1− e−λ

(v)
b (t−Tb)). The method uses the 2002-version of the

pseudo-random number generator (RNG) MT19937 [17].
To estimate the measure ETRR(t) for a model named, say, “model”, the user has to follow

the following steps:

1. Compile the model by typing “m2build model”. (See Section 1.2, page 14.)

2. Execute the model by typing “model.exe” (see Section 1.3, page 16) and, then, in the
ensuing interaction:

(a) Assign values to the parameters of the model if any.

(b) Choose the task “Estimate a measure using simulation”.

(c) Choose the measure “Expected Transient Reward Rate (ETRR(t))”.

(d) Choose the simulation method “Independent Realizations with Forced

Transitions of the Reward Rate”.

(e) Assign values to the parameters controlling the method. These parameters are, in the
order in which the user will be prompted for them in the interaction:

• Confidence level as a decimal value (e.g., 0.99).

• Allowed relative half-width of the confidence interval.

• Whether the RNG is to be initialized using a seed or the state of the RNG is to be
read from a file generated in a previous simulation (see Section 1, page 17).

• Value of the seed or name of the file.

• Allowed number of forced transitions.

• Minimum number of realizations for which the estimator is positive.

• Allowed CPU time in seconds (an integer value).

(f) Introduce the value of the time point of interest t > 0.

(g) Choose between verbose and concise output. (See Section 1.3, page 19.)

Comments:

• An error occurs and the simulation is aborted with an explanatory message if:

– In a realization, there is a state for which the function check state returns 0.

– One or more instantaneous actions get enabled in the state specified by means of the
start state construct.

46 4 Measures

– In a realization, there is a state in which two or more instantaneous actions get enabled.

– In a realization, there is a vanishing state whose reward rate is not a finite C double

or a non-vanishing state whose reward rate is not a finite C double ≥ 0.

– In a realization, there is a state in which it gets enabled a (non instantaneous) action
whose rate is not a finite C double > 0.

– In a realization, there is a state in which it gets enabled a response whose probability
is not > 0 and ≤ 1.

– In a realization, there is a state in which it gets enabled a (non instantaneous) action-
response pair such that the product of the action’s rate and the response’s probability
is not a finite C double > 0.

– In a realization, there is a self-transition.

– In a realization, there is a cycle of vanishing states.

4.2 Expected Steady-State Reward Rate

The measure is defined as the limit for t → ∞ of the expected value of the random variable
“reward rate at time t”. Formally,

ESSRR = lim
t→∞

E
[
rX(t)

]
.

It is assumed that all reward rates of the recurrent states of X are ≥ 0. Rewarded CTMCs
with negative reward rates in recurrent states and rewarded CTMCs with impulse rewards can
be accommodated, however, as explained for the ETRR(t) measure by noting that ESSRR =

limt→∞ ETRR(t).
As an example of the measure, assume that X models a fault-tolerant system that can be either

up or down, and that a reward rate 1 is assigned to the states of X in which the system is up and a
reward rate 0 is assigned to the states of X in which the system is down. Then, ESSRR would be
the steady-state availability of the system.

Let m denote the number of recurrent classes of states of X . As shown in Appendix E,
computation of the measure involves computing the 1-normalized solution (

∥∥pk
∥∥
1
= 1) of the

singular linear systems
(pk)

T
ACk,Ck = 0T, 1 ≤ k ≤ m, (4.2)

and, if m > 1 and the set, S, of transient states of X is non-empty, solving the non-singular linear
system

τ TAS,S = −(αS)
T
. (4.3)

Let S1, . . . , Sn denote the transient classes of states of X , so that S = ∪n
k=1Sk, In METFAC-2.1,

if n > 1, the matrix AS,S is permuted into block upper triangular form

AS,S =

AS1,S1 AS1,S2 · · · AS1,Sn

AS2,S2 · · · AS2,Sn

. . .
...

ASn,Sn

 ,

4.2 Expected Steady-State Reward Rate 47

and the solution τ T = ((τ 1)
T
, . . . , (τn)T) of (4.3) is obtained by solving, for increasing k starting

at k = 1, the non-singular linear systems

(τ k)
T
ASk,Sk = −(αSk)

T −
k−1∑
j=1

(τ j)
T
ASj ,Sk , 1 ≤ k ≤ n . (4.4)

The available numerical methods for solving singular linear systems are:

• LU Decomposition (LUD).

• Gauss-Seidel (GS).

• Block Gauss-Seidel (BGS).

• Adaptive Successive Overrelaxation (ASOR).

• Adaptive Generalized Minimal Residual (AGMRES).

• Stationarity Detection (SD).

Method LUD is a sparse implementation of the LU decomposition computed using the so-
called GTH algorithm [18]. Using that algorithm, in which subtractions are avoided altogether,
the decomposition is computed with low relative error [19]. The downside is a large memory
consumption as compared to a sparse implementation of standard Gaussian elimination [20], in
which the lower-triangular matrix of the decomposition needs not be stored.

Descriptions of the well-known methods GS and BGS can be found in [21]. For method
BGS, the blocks of states have to be identified by the user using the function with predefined
name and prototype block whose definition has to be included in the optional C file of the model
specification. The prototype of that function is:

long block(int sv[], int ipar[], double dpar[], long index)

where

sv[] holds, starting at location 0, the values of the state variables, given in the order
they have been declared in the model specification file;

ipar[] holds, starting at location 0, the values of the int parameters, given in the order
they have been declared in the model specification file;

dpar[] holds, starting at location 0, the values of the double parameters, given in the
order they have been declared in the model specification file;

index holds the state index, which is equal to 1 for the state specified through the
start state construct.

Inclusion of the statement ”DECLARE SYMBOLS;” in the declarative part of the function allows the
use in the body of the function of the names of the state variables and parameters declared in the
model specification file. We recall that to be able to use that statement, the optional C file of the
model specification, name.c, name being the model name, has to include the header file name.h

48 4 Measures

that is generated automatically when the model is compiled. The function is invoked for every
generated state. A block consists of all the states of the recurrent class of states of X for which
the function returns the same value. (If there is only one block or as many blocks as states the
recurrent class of states has, a warning is issued.) If the optional C file of the model specification
does not include a definition for the function or the model specification does not include a C file,
a default block function that returns 0 for every state is used.

Method ASOR is a Successive Overrelaxation method [21] with the relaxation parameter dy-
namically optimized so as to reduce the number of iterations required to achieve convergence.
Save for the stopping criterion (see page 50), the method implemented in METFAC-2.1 is the one
described in [22].

Method AGMRES is a variant [23] of the Generalized Minimal Residual method [24] in which
the dimension of the Krylov subspace is changed dynamically instead of having to be provided in
advance.

Method SD is a modified version of the method called “Randomization with Stationarity De-
tection” in Section 4.1 and can only be used when X is irreducible. Strictly speaking, the method
obtains ESSRR without computing explicitly the 1-normalized solution of the involved singular
linear system.

The available numerical methods for solving non-singular linear systems are:

• LUD.6

• GS.

• BGS.

• ASOR.

• AGMRES.

• Accelerated Gauss-Seidel (acc GS).

• Accelerated Adaptive Successive Overrelaxation (acc ASOR).

Method BGS requires the user to identify the blocks of states using the function with prede-
fined name and prototype block as explained on page 47 save that now, a block consists of all the
states of the transient class of states of X for which the function returns the same value.

Method acc GS is loosely based on the technique described in [26]. The method requires
the user to select a non-empty collection of “pivot” states for each class of transient states Sk,
1 ≤ k ≤ n, of X and works as follows. For each pivot state in Sk, a modified linear system is
solved using method GS. In case there does not exist any pivot state i such that αi > 0 and αj = 0

for all j ∈ Sk, j ̸= i, then another modified linear system is solved using method GS. Finally,
the sought solution is obtained as a linear combination of the solutions of these modified linear
systems. If the number of such systems is larger than 1, computing the weights of that combination
requires solving a dense linear system with size equal to the number of pivot states in Sk. That

6The GTH algorithm requires the row sums of the matrix of the linear system under study to be 0. To apply it to the
involved non-singular linear systems, in which at least one row does not add up 0, we use a technique that amounts to
the one described in [25].

4.2 Expected Steady-State Reward Rate 49

system is solved using Gaussian elimination with row pivoting. Method acc ASOR is similar with
method GS replaced by method ASOR.

Pivot states are selected using the function with predefined name and prototype pivot whose
definition has to be included in the optional C file of the model specification. The prototype of
that function is:

int pivot(int sv[], int ipar[], double dpar[], long index)

where the contents of the arrays sv[], ipar[], and dpar[], and the value of index are the same
as for the block function described on page 47. Inclusion of the statement ”DECLARE SYMBOLS;”
in the declarative part of the function pivot allows the use in the body of the function of the names
of state variables and parameters declared in the model specification file. The function is invoked
for every generated state. The pivot states are the states of the transient class of states of X for
which the function returns a value different from zero. (If zero is returned for every state, an error
occurs; if there are as many pivot states as states the class has, a warning is issued.) If the C file
of the model specification does not include a definition for the function or the model specification
does not include a C file, a default pivot function that returns 0 for every state is used.

To compute the measure ESSRR for a model named, say, “model”, the user has to follow the
following steps:

1. Compile the model by typing “m2build model”. (See Section 1.2, page 14.)

2. Execute the model by typing “model.exe” (see Section 1.3, page 16) and, then, in the
ensuing interaction:

(a) Assign values to the parameters of the model if any.

(b) Choose the task “Compute a measure using numerical methods”.

(c) Choose the measure “Expected Steady-State Reward Rate (ESSRR)”.

(d) Choose the numerical method to solve singular linear systems. (In the interac-
tion, the available methods appear listed under the heading “Numerical methods

(singular linear systems)”.)

(e) If the chosen method is GS, BGS, or ASOR, set the relative tolerance to solve each
singular linear system; if the chosen method is AGMRES, set the absolute tolerance
to solve each singular linear system; and, if the chosen method is SD, set the allowed
relative error.

(f) Choose the numerical method to solve non-singular linear systems. (In the interac-
tion, the available methods appear listed under the heading “Numerical methods

(non-singular linear systems)”.)

(g) If the chosen method is GS, BGS, ASOR, acc GS, or acc ASOR, set the relative
tolerance to solve each non-singular linear system; if the chosen method is AGMRES,
set the absolute tolerance to solve each non-singular linear system.

(h) Set the allowed CPU time in seconds (an integer value).7

7This value sets an (approximate) upper limit for the CPU time that can be spent in solving all the involved linear
systems.

50 4 Measures

(i) Choose between verbose and concise output. (See Section 1.3, page 19.)

Comments:

• The tool checks automatically whether the selected methods can be used and exits providing
an explanatory message if any of them cannot.

• For methods GS, BGS, ASOR, and AGMRES, the singular linear systems actually solved
are

PCk,Ckxk = 0, 1 ≤ k ≤ m, (4.5)

where PCk,Ck = (ACk,Ck)
T (

diag
(
ACk,Ck

))−1. The 1-normalized solutions of the linear
systems (4.2) are obtained from non-null solutions of the linear systems (4.5) by using

pk =

(
diag

(
ACk,Ck

))−1
xk∥∥(diag (ACk,Ck

))−1
xk
∥∥
1

.

Each linear system (4.5) is solved as follows. Let xk,l = (xk,li)i∈Ck
denote the solution

vector at iteration k and let ε be a user-given tolerance. The iterations start with xk,0 =

(1/
∣∣Ck

∣∣)1. For methods GS, BGS, and ASOR, the stopping criterion is based on comparing
xk,l and xk,l−j , j ≥ 1, and is

max
i∈Ck

(∣∣xk,li − xk,l−j
i

∣∣∣∣xk,li

∣∣
)

≤ ε .

Following the suggestion given in [21], the value of j is made depend on the iteration index
l and is 5 for l < 100, 10 for 100 ≤ l < 500, 20 for 500 ≤ l < 1000, and 50 for l ≥ 1000.
The stopping criterion for method AGMRES is∥∥PCk,Ckxk,l

∥∥
2
≤ ε∥∥(diag (ACk,Ck

))−1∥∥
F

∥∥diag (ACk,Ck
)∥∥

∞

∥∥PCk,Ck
∥∥

F

∥∥xk,l
∥∥
2
.

• For all methods save LUD, the non-singular linear systems actually solved are

PSk,Skxk = −
(
αSk +

k−1∑
j=1

(ASj ,Sk)
T (

diag
(
ASj ,Sj

))−1
xj
)
, 1 ≤ k ≤ n , (4.6)

where PSk,Sk = (ASk,Sk)
T (

diag
(
ASk,Sk

))−1. The solutions of the linear systems (4.4)
are obtained from those of (4.6) using τ k =

(
diag

(
ASk,Sk

))−1
xk. Each linear system

(4.6) is solved as follows. Let xk,l = (xk,li)i∈Sk
denote the solution vector at iteration l,

l ≥ 0, and let ε′ be a user-given tolerance. The iterations start with xk,0 = 1. For methods
GS, BGS, ASOR, acc GS, and acc ASOR, the stopping criterion is

max
i∈Sk

(∣∣xk,li − xk,l−j
i

∣∣∣∣xk,li

∣∣
)

≤ ε ,

4.2 Expected Steady-State Reward Rate 51

with j = 5 for l < 100, j = 10 for 100 ≤ l < 500, j = 20 for 500 ≤ l < 1000, and
j = 50 for l ≥ 1000. Letting qk,l = αSk +

∑k−1
j=1 (A

Sj ,Sk)
T (

diag
(
ASj ,Sj

))−1
x̃j , where

x̃j denotes the computed xj , 1 ≤ j ≤ k− 1, the stopping criterion for method AGMRES is

∥∥qk,l +PSk,Skxk,l
∥∥
2
≤ ε′∥∥(diag (ASk,Sk

))−1∥∥
F

∥∥diag (ASk,Sk
)∥∥

∞

× (
∥∥qk,l

∥∥
2
+
∥∥PSk,Sk

∥∥
F

∥∥xk,l
∥∥
2
) .

• Neglecting round-off errors, if X is irreducible and the chosen method is SD, the actual
relative error with which the measure is computed is guaranteed to be non larger than the
user-given allowed relative error. For the remaining methods save AGMRES, the actual
relative error can be expected to be proportional to the relative tolerance specified for solving
singular linear systems if X has only one class of recurrent states.

• For solving singular linear systems:

– Methods GS and SD are guaranteed to converge.8 Methods ASOR and BGS can di-
verge. Method AGMRES can stagnate and never reach the solution and can also break
down because of numerical instability.

– For rewarded CTMCs of fault-tolerant systems with exponential failure and repair
times distributions and repair in every state with failed components with failure rates
much smaller than repair rates, GS tends to work well. For other types of models,
ASOR is usually faster than GS.

– Method BGS can be very fast if blocks are chosen so that transition rates between
states in the same block are appreciably larger than transition rates between states in
different blocks.

– Very often, method AGMRES requires fewer iterations than methods GS, BGS and
ASOR. However, method AGMRES has larger memory consumption than the other
methods and its iterations are more expensive in terms of CPU time.

– Typically, method SD will be more expensive in terms of CPU time than the other
methods. However, it has the advantage of estimating the measure with controlled
(relative) error, ignoring round-off errors.

• For solving non-singular linear systems:

– Methods GS and acc GS are guaranteed to converge.

– Method AGMRES can stagnate and never reach the solution with the specified abso-
lute tolerance and can also break down because of numerical instability.

The available simulation methods for estimating the measure are:

• Regenerative Simulation (RSIM).

8Convergence of GS is guaranteed if the ordering of states satisfies some conditions which can always be fulfilled
[22] and METFAC-2.1 sorts the states so that the conditions are fulfilled.

52 4 Measures

• Independent Realizations of the Averaged Reward Rate (IRARR).

Method RSIM requires X to be irreducible and consists in sampling regenerative cycles of the
embedded DTMC of X(v) (see Appendix F). The regenerative state is the state specified by
means of the start state construct. The simulation is carried out until: 1) the number of
regenerative cycles for which the estimator of the measure is positive is non smaller than a
user-given value, and 2) the relative half-width of the standard normal approximation confi-
dence interval is non larger than a user-given value. If V denotes the collection of (possibly
repeated) non vanishing states of a regenerative cycle, the sample of the estimator for that cycle is
(
∑

i∈V r
(v)
i (λ

(v)
i)−1)/(

∑
i∈V(λ

(v)
i)−1). The method uses the 2002-version of the RNG MT19937

[17].
Method IRARR consists in sampling realizations of X(v) until: 1) the number of realizations

for which the estimator of the measure is positive is non smaller than a user-given value, and 2)
the relative half-width of the standard normal approximation confidence interval is non larger than
a user-given value. The samples are generated using the interpretation of X(v) in terms of its
embedded DTMC described in Appendix F. We recall that the specification of the initial proba-
bility distribution that can be optionally included in the model specification file (see Section 1.1.1,
page 9) has no effect and the initial probability distribution always used is: Initial probability equal
to 1 for the state specified by means of the start state construct and equal to 0 for the remaining
states. Accordingly, each realization starts at the state specified by means of the start state con-
struct and ends when the sum of the sampled sojourn times is non smaller than a user-given time
tmax. The sample of the estimator is the reward accumulated over the time interval [tmin, tmax],
where tmin < tmax is another user-given time point, divided by tmax − tmin. The method uses the
2002-version of the RNG MT19937 [17].

To estimate the measure ESSRR for a model named, say, “model”, the user has to follow the
following steps:

1. Compile the model by typing “m2build model”. (See Section 1.2, page 14.)

2. Execute the model by typing “model.exe” (see Section 1.3, page 16) and, then, in the
ensuing interaction:

(a) Assign values to the parameters of the model if any.

(b) Choose the task “Estimate a measure using simulation”.

(c) Choose the measure “Expected Steady-State Reward Rate (ESSRR)”.

(d) Choose the simulation method.

(e) Assign values to the parameters controlling the chosen simulation method. These pa-
rameters are, in the order in which the user will be prompted for them in the interaction:

• RSIM:

– Confidence level as a decimal value (e.g., 0.99).

– Allowed relative half-width of the confidence interval.

– Whether the RNG is to be initialized using a seed or the state of the RNG
is to be read from a file generated in a previous simulation (see Section 1,
page 17).

4.2 Expected Steady-State Reward Rate 53

– Value of the seed or name of the file.

– Minimum number of regenerative cycles for which the estimator is positive.

– Allowed CPU time in seconds (an integer value).

• IRARR:

– Confidence level as a decimal value (e.g., 0.99).

– Allowed relative half-width of the confidence interval.

– Whether the RNG is to be initialized using a seed or the state of the RNG is
to be read from a file generated in a previous simulation.

– Value of the seed or name of the file.

– Minimum number of realizations for which the estimator is positive.

– tmin

– tmax > tmin

– Allowed CPU time in seconds (an integer value).

(f) Choose between verbose and concise output. (See Section 1.3, page 19.)

Comments:

• An error occurs and the simulation is aborted with an explanatory message if:

– In a realization or a regenerative cycle, there is a state for which the function
check state returns 0.

– One or more instantaneous actions get enabled in the state specified by means of the
start state construct.

– In a realization or a regenerative cycle, there is a state in which two or more instanta-
neous actions get enabled.

– In a realization or a regenerative cycle, there is a vanishing state whose reward rate
is not a finite C double or a non-vanishing state whose reward rate is not a finite C
double ≥ 0.

– In a realization or a regenerative cycle, there is a state in which it gets enabled a (non
instantaneous) action whose rate is not a finite C double > 0.

– In a realization or a regenerative cycle, there is a state in which it gets enabled a
response whose probability is not > 0 and ≤ 1.

– In a realization or a regenerative cycle, there is a state in which it gets enabled a (non
instantaneous) action-response pair such that the product of the action’s rate and the
response’s probability is not a finite C double > 0.

– In a realization or a regenerative cycle, there is a self-transition.

– In a realization or a regenerative cycle, there is a cycle of vanishing states.

– In a regenerative cycle, there is an absorbing state.

54 4 Measures

4.3 Expected Averaged Reward Rate

The measure is the expected value of the random variable “reward rate averaged over the time
interval [0, t]”. Formally,

EARR(t) = E

[∫ t
0 rX(τ) dτ

t

]
.

Note that from EARR(t) it is immediate to compute the expected value of the random variable
”reward accumulated by X over the time interval [0, t]”,

∫ t
0 rX(τ) dτ , as

E

[∫ t

0
rX(τ) dτ

]
= t× EARR(t) .

Measures EARR(t) and ETRR(t) are related as follows:

EARR(t) =
1

t

∫ t

0
E
[
rX(τ)

]
dτ =

1

t

∫ t

0
ETRR(τ) dτ .

It is assumed that the reward rate of each state of X is ≥ 0. That restriction can be circumvented
by shifting otherwise the reward rates by a positive amount d so that the new reward rates r′i =

ri + d are all ≥ 0. The expected averaged reward rate of X is related to the expected averaged
reward rate measure, EARR′(t), of the rewarded CTMC with shifted reward rates by EARR(t) =

EARR′(t)−d. Rewarded CTMCs with impulse rewards ri,j which are earned each time X makes
a transition from state i to state j can be also accommodated by adding the contribution λi,jri,j to
the reward rate associated with state i. The mapping requires redefining the EARR(t) measure as

EARR(t) = E

[
reward accumulated by X in [0, t]

t

]
and is justified in Appendix E.

As an example of the measure, assume that X models a fault-tolerant system that can be either
up or down, and that a reward rate 1 is assigned to the states of X in which the system is up and a
reward rate 0 is assigned to the states of X in which the system is down. Then, EARR(t) would
be the expected interval availability of the system (expected fraction of the time interval [0, t] in
which the system is up) and t×EARR(t) would be the expected amount of time the system is up
in [0, t].

Available numerical methods for computing this measure are:

• Standard Randomization (SR).

• Standard Randomization with control of the Relative Error (SRRE).

• Randomization with Stationarity Detection (RSD).

• Randomization with Quasistationarity Detection (RQSD).

• Regenerative Randomization (RR).

• Regenerative Randomization with Laplace Transform Inversion (RRLT).

• Explicit Runge-Kutta ODE Solver (ERKODES).

4.3 Expected Averaged Reward Rate 55

• Implicit Runge-Kutta ODE Solver (IRKODES).

Methods SR and SRRE are directly based on the interpretation of X in terms of a Poisson
process and a randomized discrete-time Markov chain (see Appendix F) and are described in [1]
and [2], respectively. The difference between these methods is that in method SR the measure is
computed with control of the absolute error whereas in method SRRE what is controlled is the
relative error.

Method RSD combines the randomization interpretation with stationarity detection and is de-
scribed in [3].

Method RQSD combines the randomization interpretation with quasistationarity detection and
is described in [4].

Methods RR and RRLT follow a different approach [5, 1, 6]. In these methods, a truncated
transformed rewarded CTMC model Y is obtained from X of (hopefully) smaller size by char-
acterizing with enough accuracy the behavior of X till the time it hits a “regenerative” state and
between consecutive hits to that state. The rewarded CTMC model Y , which has with some arbi-
trarily small error the same EARR(t) measure as X , is then solved either using the SR method
(RR) or using a numerical Laplace transform inversion algorithm on a closed-form Laplace trans-
form solution of Y (RRLT). The regenerative state is selected by the user by means of the function
with predefined name and prototype regstat as described in Section 4.1, page 41.

Let li(x) =
∫ x
0 pi(y) dy and l(x) = (li(x))i∈Ω. Methods ERKODES and IRKODES compute

l(t) as the solution at t = τ of the linear ODE

d l(τ)

d τ
= ATl(τ) +α

with the initial condition l(0) = 0 and next compute EARR(t) = (1/t)
∑

i∈Ω rili(t). In
method ERKODES, the ODE (4.1) is solved using one of the explicit Runge-Kutta ODE solvers
RK5(4)7M and RK6(5)8M described when dealing with the ETRR(t) measure (see page 42), and
in method IRKODES, the ODE is solved using using the implicit Runge-Kutta ODE solver Radau
IIA with order 3, 5, 7, 9, or 11 described when dealing with that measure.

Methods SR, SRRE, ERKODES, and IRKODES can be used for any X . The remaining
methods are less general and require the following conditions to hold, where r denotes the chosen
regenerative state for methods RR and RRLT:

• Method RSD: X is irreducible.

• Method RQSD:

– The state space Ω of X is of the form Ω = S∪{f1, . . . , fA}, A ≥ 1, where all states in
S make up a single transient class of states and the states fi, 1 ≤ i ≤ A are absorbing
and have associated with them different reward rates.

– The sum of the initial probabilities of the states in S is > 0.

• Methods RR, RRLT:

C1. Ω = S ∪{f1, f2, . . . , fA},
∣∣S∣∣ ≥ 2, A ≥ 0, where either all states in S are transient or

S includes a single recurrent class of states C and the states fi are absorbing and have
associated with them different reward rates.

56 4 Measures

C2. r ∈ S.

C3. If S includes a single recurrent class of states C, r ∈ C.

C4. There exists some transition rate from r to some state in S − {r}.

To compute the measure EARR(t) for a model named, say, “model”, the user has to follow
the following steps:

1. Compile the model by typing “m2build model”. (See Section 1.2, page 14.)

2. Execute the model by typing “model.exe” (see Section 1.3, page 16) and, then, in the
ensuing interaction:

(a) Assign values to the parameters of the model if any.

(b) Choose the task “Compute a measure using numerical methods”.

(c) Choose the measure “Expected Averaged Reward Rate (EARR(t))”.

(d) Choose the numerical method.

(e) Assign values to the parameters controlling the chosen numerical method. These pa-
rameters are, in the order in which the user will be prompted for them in the interaction:

• SR: Allowed absolute error and allowed CPU time in seconds (an integer value).

• SRRE: Allowed relative error and allowed CPU time in seconds.

• RSD, RQSD, RR: Allowed absolute error and allowed CPU time in seconds.

• RRLT: Absolute tolerance and allowed CPU time in seconds.

• ERKODES: Order of the ODE solver (either 5 or 7), absolute tolerance, and
allowed CPU time in seconds.

• IRKODES: Order of the ODE solver (either 3, 5, 7, 9, or 11), absolute tolerance,
and allowed CPU time in seconds.

(f) Define the grid of time abscissae t at which the measure has to be computed. (See
Section 1.3, page 18.)

(g) Choose between verbose and concise output. (See Section 1.3, page 19.)

Comments:

• The tool checks automatically whether the selected method can be used and exits providing
an explanatory message if the method cannot.

• Let ρ = maxi∈Ω λitmax, where tmax is the largest value of t for which the measure has to
be computed. For small values of ρ, method ERKODES can be faster than the remaining
methods. For large values of ρ, methods RSD, RQSD, RR, RRLT, and IRKODES can
be significantly faster than methods SR, SRRE, and ERKODES (the CPU time required
by methods SR and SRRE is approximately directly proportional to ρ). For very large
values of ρ, method IRKODES can be the fastest one. Recall, however, than methods RSD,
RQSD, RR, and RRLT are less general than methods SR and SRRE, and that methods
RRLT, ERKODES, and IRKODES do not provide strict error control.

4.3 Expected Averaged Reward Rate 57

• Selecting an appropriate regenerative state for methods RR and RRLT is a delicate issue.
As a general rule, the regenerative state should be a state visited often by the randomized
discrete-time Markov chain of X with randomization rate slightly larger than maxi∈Ω λi.
When the choice is not very clear, the user should be aware that a “bad” selection for the
regenerative state can degrade severely the performance of the methods. For failure/repair
exact and bounding rewarded CTMCs of fault-tolerant systems with exponential failure and
repair time distributions and repair in every state with failed components with failure rates
much smaller than repair rates, a good choice for the regenerative state is the state without
failed components. For other types of models for which a good selection for the regenerative
state exists, see [5, 1, 6, 7].

• Method RRLT can be significantly less costly than the method RR when in the latter the
computational cost of the second phase of the method (solution of the truncated transformed
rewarded CTMC using method SR) dominates the computational cost of the first phase
(generation of the truncated transformed rewarded CTMC).

• For methods RR and RRLT, the condition that there exist some transition rate from the
regenerative state, r, to some state in S−{r} (condition C4 on page 56) can be circumvented
by adding a tiny transition rate λ ≤ (10−10ε)/(2rmaxtmax), where ε is the allowed absolute
error, rmax = maxi∈Ω ri, and tmax is the largest value of t for which the measure has to be
computed, with a negligible impact on the measure non greater than 10−10ε.

At present, only one simulation method is available for estimating the measure. In the inter-
action with the user, that method is listed under the name “Independent Realizations with

Forced Transitions of the Averaged Reward Rate”. The method consists in sampling
realizations of X(v) until: 1) the number of realizations for which the estimator of the measure is
positive is non smaller than a user-given value, and 2) the relative half-width of the standard normal
approximation confidence interval is non larger than a user-given value. The samples are generated
using the interpretation of X(v) in terms of its embedded DTMC described in Appendix F. We
recall that the specification of the initial probability distribution that can be optionally included
in the model specification file (see Section 1.1.1, page 9) has no effect and the initial probabil-
ity distribution always used is: Initial probability equal to 1 for the state specified by means of
the start state construct and equal to 0 for the remaining states. Accordingly, each realiza-
tion starts at the state specified by means of the start state construct and ends when the sum
of the sampled sojourn times is non smaller than the time point of interest t. During a realiza-
tion, a transition is forced whenever: 1) the number of transitions that have been forced up to
that point throughout the simulation has not yet reached a user-given limit, 2) the current state,
a, of the realization is neither absorbing nor vanishing, 3) the cumulative reward up to entry into
state a is 0, and 4) r

(v)
a = 0. If Ta < t denotes the sum of the sampled sojourn times in the

states of the current realization up to entry into state a, the transition is forced by limiting the
sojourn time in that state to t − Ta. This is achieved by changing the probability distribution
function of the random variable “sojourn time in state a” from F (u) = 1 − e−λ

(v)
a u, u ≥ 0, to

F ′(u) = (1− e−λ
(v)
a u)/(1− e−λ

(v)
a (t−Ta)), 0 ≤ u ≤ t−Ta. For each realization, the sample of the

estimator is the reward accumulated over the time interval [0, t] divided by t and multiplied, if one
or more transitions have been forced, by a a factor that takes account of those forced transitions.

58 4 Measures

If F denotes the collection of (possibly repeated) states of the realization where transitions have
been forced, that factor is

∏
b∈F (1− e−λ

(v)
b (t−Tb)). The method uses the 2002-version of the RNG

MT19937 [17].
To estimate the measure EARR(t) for a model named, say, “model”, the user has to follow

the following steps:

1. Compile the model by typing “m2build model”. (See Section 1.2, page 14.)

2. Execute the model by typing “model.exe” (see Section 1.3, page 16) and, then, in the
ensuing interaction:

(a) Assign values to the parameters of the model if any.

(b) Choose the task “Estimate a measure using simulation”.

(c) Choose the measure “Expected Averaged Reward Rate (EARR(t))”.

(d) Choose the simulation method “Independent Realizations with Forced

Transitions of the Averaged Reward Rate”.

(e) Assign values to the parameters controlling the method. These parameters are, in the
order in which the user will be prompted for them in the interaction:

• Confidence level as a decimal value (e.g., 0.99).

• Allowed relative half-width of the confidence interval.

• Whether the RNG is to be initialized using a seed or the state of the RNG is to be
read from a file generated in a previous simulation (see Section 1, page 17).

• Value of the seed or name of the file.

• Allowed number of forced transitions.

• Minimum number of realizations for which the estimator is positive.

• Allowed CPU time in seconds (an integer value).

(f) Introduce the value of the time point of interest t > 0.

(g) Choose between verbose and concise output. (See Section 1.3, page 19.)

Comments:

• An error occurs and the simulation is aborted with an explanatory message if:

– In a realization, there is a state for which the function check state returns 0.

– One or more instantaneous actions get enabled in the state specified by means of the
start state construct.

– In a realization, there is a state in which two or more instantaneous actions get enabled.

– In a realization, there is a vanishing state whose reward rate is not a finite C double

or a non-vanishing state whose reward rate is not a finite C double ≥ 0.

– In a realization, there is a state in which it gets enabled a (non instantaneous) action
whose rate is not a finite C double > 0.

– In a realization, there is a state in which it gets enabled a response whose probability
is not > 0 and ≤ 1.

4.4 Cumulative Reward Complementary Distribution 59

– In a realization, there is a state in which it gets enabled a (non instantaneous) action-
response pair such that the product of the action’s rate and the response’s probability
is not a finite C double > 0.

– In a realization, there is a self-transition.

– In a realization, there is a cycle of vanishing states.

4.4 Cumulative Reward Complementary Distribution

The measure is defined as the complementary distribution function of the random variable “reward
accumulated by X over the time interval [0, t]”. Formally,

CRCD(t, s) = P

[∫ t

0
rX(τ) dτ > s

]
.

It is assumed that the reward rate of each state of X is ≥ 0. That restriction can be circumvented by
shifting otherwise the reward rates by a positive amount d so that the new reward rates r′i = ri+ d

are all ≥ 0. The cumulative reward complementary distribution of X is related to the cumulative
reward complementary distribution measure, CRCD′(t, s), of the rewarded CTMC with shifted
reward rates by CRCD(t, s) = CRCD′(t, s+ td).

As an example of the measure, assume that X models a gracefully degradable system. Assume
also that each state of X is assigned a reward rate equal to the rate at which the system performs
its job in the state. Then, CRCD(t, s) is the probability that the amount of job the system has done
in the time interval [0, t] is greater than s.

Available numerical methods for computing this measure are:

• Method of Nabli and Sericola (NS).

• Bounding Transformation/Regenerative Transformation (BT/RT).

• Bounding Transformation/Bounding Regenerative Transformation (BT/BRT).

Method NS [27] (see also [28]) is based on the interpretation of X in terms of a Poisson
process and a randomized discrete-time Markov chain (see Appendix F).

Methods BT/RT and BT/BRT [29]:

1. Are based on building a truncated transformed rewarded CTMC with reward rates 0 and 1
(of, hopefully, much smaller size than X). The truncated transformed rewarded CTMC is
solved using Algorithm A of [30] for computing the measure “Interval Availability Com-
plementary Distribution” (see Section 4.5).

2. Compute a lower bound, an upper bound, or both for CRCD(t, s).

3. Require the selection of a “regenerative” state. That selection is carried out by means of the
function with predefined name and prototype regstat as explained in Section 4.1, page 41.

In addition, in method BT/BRT there is a control parameter, called equalization parameter in the
interaction with the user, that allows to trade-off bounds tightness with computational cost.

60 4 Measures

Method NS can be used for any X . Methods BT/RT and BT/BRT are only applicable un-
der some conditions. First, denoting rmax = maxi∈Ω ri, rmin = mini∈Ω ri, and rfmax =

maxi∈Ω : ri ̸=rmax ri, both methods require the abscissa s to satisfy rmin t < s < rmax t if the lower
bound is to be computed and rfmax t < s < rmax t if the upper bound is to be computed. Obvi-
ously, this implies t > 0 and s > 0. Second, X and the chosen regenerative state r have to fulfill
the following conditions, where Ωmax = {i ∈ Ω : ri = rmax}, Ωfmax = {i ∈ Ω : ri = rfmax},
Ωmin = {i ∈ Ω : ri = rmin}, Ω = Ω − Ωmax − Ωfmax − Ωmin, Smax = S ∩ Ωmax,
Sfmax = S ∩ Ωfmax, Smin = S ∩ Ωmin, S = S ∩ Ω, S′

max = Smax − {r}, S′
fmax = Sfmax − {r},

S′
min = Smin − {r}, and S

′
= S − {r}:

• Method BT/RT:

C1. The reward rates ri, i ∈ Ω take at least three different values.

C2. Ω = S or Ω = S ∪ {f}, where f is an absorbing state.

C3.
∣∣S∣∣ ≥ 2.

C4. Either all states in S are transient or X has a single recurrent class of states C ⊂ S.

C5. maxi∈Ωmax λi > 0 and maxi∈Ωfmax∪Ω∪Ωmin
λi > 0.

C6. r ∈ S and, if X has a single recurrent class of states C ⊂ S, r ∈ C.

C7. If S′
max ̸= ∅, λr,S′

max
> 0.

C8. If S′
max ̸= ∅, α

S′
fmax∪S

′∪S′
min

> 0 and αS′
max

= 0, λi,S′
max

> 0 for some i ∈ S′
fmax ∪

S
′ ∪ S′

min with αi > 0.

• Method BT/BRT: Conditions C1 through C8 above and the condition:

C9. S′
max ̸= ∅.

Moreover, the equalization parameter, DC , has to have a value satisfying 1 ≤ DC <

maxi∈S′
max

λi/mini∈S′
max

λi. The bounds become tighter and computationally more costly
as DC increases.

To compute the measure CRCD(t, s) for a model named, say, “model”, the user has to follow
the following steps:

1. Compile the model by typing “m2build model”. (See Section 1.2, page 14.)

2. Execute the model by typing “model.exe” (see Section 1.3, page 16) and, then, in the
ensuing interaction:

(a) Assign values to the parameters of the model if any.

(b) Choose the task “Compute a measure using numerical methods”.

(c) Choose the measure “Cumulative Reward Complementary Distribution

(CRCD(t,s))”.

(d) Choose the numerical method.

(e) Assign values to the parameters controlling the chosen numerical method. These pa-
rameters are, in the order in which the user will be prompted for them in the interaction:

4.4 Cumulative Reward Complementary Distribution 61

• NS: Allowed absolute error and allowed CPU time in seconds (an integer value).
• BT/RT: Bounds that have to be computed (lower bound, upper bound or both),

allowed absolute error, and allowed CPU time in seconds.
• BT/BRT: Bounds that have to be computed (lower bound, upper bound or both),

equalization parameter (the larger the parameter, the tighter and more computa-
tionally costly the bounds will be), allowed absolute error, and allowed CPU time
in seconds.

(f) Define the set of (t, s) pairs for which the measure has to be computed. Such a set must
be given as a comma-separated list of pairs enclosed with parentheses. For instance,
to compute the measure for t = 1, 000, s = 3 and t = 2, 500, s = 22, the user could
type “(1000,3), (2.5e2,2.2e1)”. The list needs not be sorted.

(g) Choose between verbose and concise output. (See Section 1.3, page 19.)

Comments:

• The tool checks automatically whether the selected method can be used and exits providing
an explanatory message if the method cannot.

• Neglecting round-off errors, in all methods the error with which the measure or bounds for
it are computed is guaranteed to be non larger than the specified allowed absolute error.

• Method NS has much smaller computational cost in terms of CPU time for the case
rfmax t ≤ s < rmax t than for the case s < rfmax t. For the latter case, the computational
cost of the method in terms of CPU time is often prohibitive.

• In method BT/RT, there exists a unique subset of states S for which conditions C2, C4,
and C6 can be satisfied for a given selection of the regenerative state r: S must be Ω if X
has no absorbing state or X has a single absorbing state a and r = a; S must be Ω − {a}
if X has a single absorbing state a and r ̸= a or X has two absorbing states a, b and
b = r; and, in any other case, no S exists for which conditions C2, C4, and C6 can all
be satisfied. This makes it easy to check whether X with a given selection for the regen-
erative state r is covered by the method. Conditions C1 and C5 are mild, in the sense
that, when these conditions are not satisfied, computation of CRCD(t, s) or of bounds for
CRCD(t, s) can be reduced to simpler problems. Thus, when the reward rates of X are finite
but take only two different values, rmax and rmin, CRCD(t, s) can be formulated in terms
of the simpler interval availability complementary distribution measure (see Section 4.5),
IAVCD(t, p), using CRCD(t, s) = IAVCD(t, (s/t− rmin)/(rmax − rmin)). When condi-
tion C1 is satisfied but maxi∈Ωmax λi = 0, lower an upper bounds for CRCD(t, s) can be
computed as P [X lb((1− (s/t− rmin)/(rmax − rmin))t) ∈ Ωmax] and P [Xub((1− (s/t−
rfmax)/(rmax − rfmax))t) ∈ Ωmax], where X lb and Xub are described in detail in [29].
Similarly, assuming C1 satisfied but maxi∈Ωfmax∪Ω∪Ωmin

λi = 0, lower and upper bounds
for CRCD(t, s) can be computed as P [X lb(((s/t − rmin)/(rmax − rmin))t) ∈ Ωmax] and
P [Xub(((s/t − rfmax)/(rmax − rfmax))t) ∈ Ωmax]. Finally, conditions C7 and C8 can be
circumvented by adding to X a tiny transition rate λ ≤ 10−10ε/(2tmax), where ε is the
allowed error and tmax is the largest time t at which bounds for CRCD(t, s) have to be
computed, with a negligible impact on CRCD(t, s) non greater than 10−10ε.

62 4 Measures

• Conditions C7 and C9 imply that the regenerative state cannot be absorbing and, then, ac-
cording to the discussion regarding the possibilities for S in the BT/RT method, in BT/BRT,
the set S must include precisely the non-absorbing states. We point out that, when condition
C9 is not satisfied, the BT/RT method will be relatively inexpensive for s close to rmax t,
obviating the need for a potentially more efficient method to compute looser bounds such as
method BT/BRT.

• For exact and bounding failure/repair rewarded CTMCs of fault-tolerant systems with expo-
nential failure and repair time distributions and repair in every state with failed components
with failure rates much smaller than repair rates and a reward rate structure which is non-
increasing with the collection of failed components, a good choice for the regenerative state
is the state without failed components. For other types of models for which a good selection
for the regenerative state exists, see [29].

At present, only one simulation method is available for estimating the measure. In the inter-
action with the user, that method is listed under the name “Independent Realizations with

Forced Transitions of the Cumulative Reward”. The method consists in sampling real-
izations of X(v) until: 1) the number of realizations for which the estimator of the measure is
positive is non smaller than a user-given value, and 2) the relative half-width of the confidence
interval is non larger than a user-given value. The samples are generated using the interpretation
of X(v) in terms of its embedded DTMC described in Appendix F. We recall that the specification
of the initial probability distribution that can be optionally included in the model specification file
(see Section 1.1.1, page 9) has no effect and the initial probability distribution always used is: Ini-
tial probability equal to 1 for the state specified by means of the start state construct and equal
to 0 for the remaining states. Accordingly, each realization starts at the state specified by means of
the start state construct and ends when the sum, T , of the sampled sojourn times is non smaller
than the time point of interest t, or, being T < t, the sampled cumulative reward, R, is > s or
≤ s− rub(t−T), where rub is a user-given upper bound for the reward rates of the non-vanishing
states of the rewarded CTMC. During a realization, a transition is forced whenever: 1) the number
of transitions that have been forced up to that point throughout the simulation has not yet reached
a user-given limit, 2) the current state, a, of the realization is neither absorbing nor vanishing, and
3) r(v)a ≤ (s−Ra)/(t− Ta), where Ta denotes the sum of the sampled sojourn times in the states
of the current realization up to entry into state a and Ra denotes the sampled cumulative reward
in the current realization up to entry into state a. The transition is forced by limiting the sojourn
time in state a to th(a) = min{(Ra+ rub(t−Ta)− s)/(rub− r

(v)
a), t−Ta} > 0. This is achieved

by changing the probability distribution function of the random variable “sojourn time in state a”

from F (u) = 1− e−λ
(v)
a u, u ≥ 0, to F ′(u) = (1− e−λ

(v)
a u)/(1− e−λ

(v)
a th(a)), 0 ≤ u ≤ th(a). For

each realization, the sample of the estimator is 0 if the reward accumulated over the time interval
[0, t] is ≤ s and otherwise is 1 multiplied, if one or more transitions have been forced, by a factor
that takes account of those forced transitions. If F denotes the collection of (possibly repeated)

states of the realization where transitions have been forced, that factor is
∏

b∈F (1 − e−λ
(v)
b th(b)).

The method uses the 2002-version of the RNG MT19937 [17].
To estimate the measure CRCD(t, s) for a model named, say, “model”, the user has to follow

the following steps:

4.4 Cumulative Reward Complementary Distribution 63

1. Compile the model by typing “m2build model”. (See Section 1.2, page 14.)

2. Execute the model by typing “model.exe” (see Section 1.3, page 16) and, then, in the
ensuing interaction:

(a) Assign values to the parameters of the model if any.

(b) Choose the task “Estimate a measure using simulation”.

(c) Choose the measure “Cumulative Reward Complementary Distribution

(CRCD(t,s))”.

(d) Choose the simulation method ‘Independent Realizations with Forced

Transitions of the Cumulative Reward”.

(e) Assign values to the parameters controlling the method. These parameters are, in the
order in which the user will be prompted for them in the interaction:

• Confidence level as a decimal value (e.g., 0.99).

• Allowed relative half-width of the confidence interval.

• Whether the RNG is to be initialized using a seed or the state of the RNG is to be
read from a file generated in a previous simulation (see Section 1, page 17).

• Value of the seed or name of the file.

• Allowed number of forced transitions.

• Minimum number of realizations for which the estimator is positive.

• Upper bound rub for the reward rates of the non-vanishing states of the rewarded
CTMC.

• Allowed CPU time in seconds (an integer value).

(f) Specify the pair (t, s), t > 0, 0 < s < rub × t. The pair must be enclosed with
parentheses. For instance, to estimate the measure for t = 1, 000 and s = 3, the user
could type “(1000,3)”.

(g) Choose between verbose and concise output. (See Section 1.3, page 19.)

Comments:

• If the allowed number of forced transitions is set to a value > 0, the method uses the standard
normal approximation confidence interval. Otherwise, the method uses the Clopper-Pearson
confidence interval [31].

• An error occurs and the simulation is aborted with an explanatory message if:

– In a realization, there is a state for which the function check state returns 0.

– One or more instantaneous actions get enabled in the state specified by means of the
start state construct.

– In a realization, there is a state in which two or more instantaneous actions get enabled.

– In a realization, there is a vanishing state whose reward rate is not a finite C double

or a non-vanishing state whose reward rate is not a finite C double ≥ 0.

64 4 Measures

– In a realization, there is a state in which it gets enabled a (non instantaneous) action
whose rate is not a finite C double > 0.

– In a realization, there is a state in which it gets enabled a response whose probability
is not > 0 and ≤ 1.

– In a realization, there is a state in which it gets enabled a (non instantaneous) action-
response pair such that the product of the action’s rate and the response’s probability
is not a finite C double > 0.

– In a realization, there is a self-transition.

– In a realization, there is a cycle of vanishing states.

– In a realization, there is a non-vanishing state whose reward rate is larger than rub.

4.5 Interval Availability Complementary Distribution

For the measure to be well-defined, the reward rate of each state of X must be either 0 or 1. States
with reward rate equal to 1 are interpreted as states in which the system is up; states with reward
rate equal to 0 are interpreted as states in which the system is down; and, with that interpretation,
the measure is defined as the complementary probability distribution function of the random vari-
able “fraction of time in the time interval [0, t] spent by X in up states”. Formally, being U the
subset of up states:

IAVCD(t, p) = P

[∫ t
0 1X(τ)∈U dτ

t
> p

]
.

The measure can be considered a particular case of the CRCD(t, s) measure (IAVCD(t, p) =

CRCD(t, pt)) when all reward rates are either 0 or 1. It is offered as an independent measure
because specialized, more efficient numerical methods exist for computing the measure. It is
assumed t > 0 and 0 < p < 1.

Available numerical methods for computing this measure are:

• Algorithm A of Rubino and Sericola (RS).

• Algorithm with Two Randomization Rates (IAVCD-2RR).

• Regenerative Transformation (RT).

• Bounding Regenerative Transformation (BRT).

Method RS is based on the interpretation of X in terms of a Poisson process and a randomized
discrete-time Markov chain (see Appendix F) and is described in [30].

Method IAVCD-2RR is based on a randomization construct with different randomization rates
for the up and the down states and can be substantially faster than method RS when the maximum
output rates of the up and down states are significantly different [32].

In method RT, a truncated transformed rewarded CTMC model is obtained from X of (hope-
fully) smaller size by characterizing with enough accuracy the behavior of X from a “regenerative”
state till next hit of either that state or, if existing, an absorbing state, and if X has some initial
probability distribution outside the regenerative and the absorbing states, the behavior of X till first

4.5 Interval Availability Complementary Distribution 65

hit of the regenerative state or, if existing, hit of the absorbing state. The truncated transformed
rewarded CTMC model is then solved using method RS. The regenerative state is selected by
means of the function with predefined name and prototype regstat as explained in Section 4.1,
page 41.

Method BRT [33] computes a lower bound, an upper bound, or both for IAVCD(t, p) and also
requires the selection of a regenerative state r. The method combines: 1) a model transformation
step in which the transition rates from up states different from the regenerative state and, if exist-
ing, the absorbing state are scaled, and 2) the solution of the CTMC model with scaled transition
rates using method RT. The scaling is controlled by an equalization parameter DC . The regener-
ative state has to be selected using the function with predefined name and prototype regstat as
explained in Section 4.1, page 41.

Method RS can be used for any X . The remaining methods are less general and require the
following conditions to hold, where r denotes the chosen regenerative state for methods RT and
BRT:

• Method IAVCD-2RR: U ̸= ∅, D ̸= ∅, maxi∈U λi > 0, and maxi∈D λi > 0.

• Method RT: Denoting D = Ω − U , US = U ∩ S, DS = D ∩ S, U ′
S = US − {r}, and

D′
S = DS − {r},

C1. Ω = S or Ω = S ∪ {f}, where f is an absorbing state;

C2.
∣∣S∣∣ ≥ 2;

C3. either all states in S are transient of S has a single recurrent class of states C ⊂ S;

C4. U ̸= ∅ and D ̸= ∅;

C5. maxi∈U λi > 0 and maxi∈D λi > 0;

C6. r ∈ S and, if X has a single recurrent class of states C ⊂ S, r ∈ C;

C7. if U ′
S ̸= ∅, λr,U ′

S
> 0;

C8. if U ′
S ̸= ∅, αD′

S
> 0 and αU ′

S
= 0, λi,U ′

S
> 0 for some i ∈ D′

S with αi > 0.

• Method BRT: Conditions C1 through C9 above and the condition:

C9. U ′
S ̸= ∅.

Moreover, the equalization parameter DC has to satisfy 1 ≤ DC <

maxi∈U ′
S
λi/mini∈U ′

S
λi. The bounds become tighter and computationally more costly as

DC increases.

To compute the measure IAVCD(t, p) for a model named, say, “model”, the user has to follow
the following steps:

1. Compile the model by typing “m2build model”. (See Section 1.2, page 14.)

2. Execute the model by typing “model.exe” (see Section 1.3, page 16) and, then, in the
ensuing interaction:

(a) Assign values to the parameters of the model if any.

66 4 Measures

(b) Choose the task “Compute a measure using numerical methods”.

(c) Choose the measure “Interval Availability Complementary Distribution

(IAVCD(t,p))”.

(d) Choose the numerical method.

(e) Assign values to the parameters controlling the chosen numerical method. These pa-
rameters are, in the order in which the user will be prompted for them in the interaction:

• RS, IAVCD-2RR, RT: Allowed absolute error and allowed CPU time in seconds
(an integer value).

• BRT: Bounds that have to be computed (lower bound, upper bound or both),
equalization parameter (the larger the parameter, the more tight and computation-
ally costly the bounds will be), allowed absolute error, and allowed CPU time in
seconds.

(f) Define the set of (t, p) pairs for which the measure has to be computed. Such a set must
be given as a comma-separated list of pairs enclosed with parentheses. For instance, to
compute the measure for t = 1, 000, p = 0.9 and t = 2, 500, p = 0.8, the user could
type “(1000,0.9), (2.5e2,0.8)”. The list needs not be sorted.

(g) Choose between verbose and concise output. (See Section 1.3, page 19.)

Comments:

• Neglecting round-off errors, in all methods the error with which the measure or bounds for
it are computed is guaranteed to be non larger than the specified allowed error.

• When the maximum output rates of up and down states are significantly different, method
IAVCD-2RR can be significantly faster than method RS.

• Method RT can be significantly faster than method RS.

• Method BRT can be much faster than methods RS and RT.

• The conditions required by method IAVCD-2RR are mild in the sense that when any of them
is not satisfied, computation of IAVCD(t, p) can be reduced to a simpler problem: If there
are not up states, IAVCD(t, p) = 0; if there are not down states, IAVCD(t, p) = 1; if all
up states are absorbing, IAVCD(t, p) = ETRR(pt); and, if all down states are absorbing,
IAVCD(t, p) = ETRR((1− p)t).

• In method RT, there exists a unique subset of states S for which conditions C1, C3 and C6
can be satisfied for a given selection of the regenerative state r: S must be Ω if X has no
absorbing state or X has a single absorbing state a and r = a; S must be Ω − {a} if X
has a single absorbing state a and r ̸= a or X has two absorbing states a, b and b = r;
and, in any other case, no S exists for which conditions C1, C3 and C6 can all be satisfied.
This makes it easy to check whether X with a given selection for the regenerative state r is
covered by the method. Condition C5 is mild, in the sense that, when that condition is not
satisfied, computation of IAVCD(t, p) can be reduced to a simpler problem: When all up
states are absorbing, IAVCD(t, p) = ETRR(pt) and, when all down states are absorbing,

4.5 Interval Availability Complementary Distribution 67

IAVCD(t, p) = ETRR((1 − p)t). Finally, conditions C7 and C8 can be circumvented by
adding to X a tiny transition rate λ ≤ 10−10ε/(2tmax), where ε is the allowed error and
tmax is the largest time t at which IAVCD(t, p) has to be computed, with negligible impact
on IAVCD(t, p) non greater than 10−10ε.

• Conditions C7 and C9 imply that the regenerative state cannot be absorbing and, then, ac-
cording to the discussion regarding the possibilities for S in the method RT, in BRT the set
S must include precisely the non-absorbing states. We point out that, when condition C9 is
not satisfied, method RT will be relatively inexpensive for p close to 1, obviating the need
for a potentially more efficient method to compute bounds such as method BRT.

• For typical failure/repair exact and bounding CTMC models of fault-tolerant systems with
increasing structure function, exponential failure and repair time distributions and repair
in every state with failed components, a good choice for the regenerative state is the state
without failed components. For other types of models for which a good selection for the
regenerative state exists, see [34] for method RT and [33] for method BRT.

At present, only one simulation method is available for estimating the measure. In the inter-
action with the user, that method is listed under the name “Independent Realizations with

Forced Transitions of the Cumulative Up Time”. The method consists in sampling re-
alizations of X(v) until: 1) the number of realizations for which the estimator of the measure is
positive is non smaller than a user-given value, and 2) the relative half-width of the confidence
interval is non larger than a user-given value. The samples are generated using the interpretation
of X(v) in terms of its embedded DTMC described in Appendix F. We recall that the specification
of the initial probability distribution that can be optionally included in the model specification file
(see Section 1.1.1, page 9) has no effect and the initial probability distribution always used is: Ini-
tial probability equal to 1 for the state specified by means of the start state construct and equal
to 0 for the remaining states. Accordingly, each realization starts at the specified by means of the
start state construct and ends when the sum, T , of the sampled sojourn times is non smaller
than the time point of interest t, or, being T < t, the sum, TU, of the sampled sojourn times in
up states is > pt or T − TU ≥ (1− p)t. During a realization, a transition is forced whenever: 1)
the number of transitions that have been forced up to that point throughout the simulation has not
yet reached a user-given limit, 2) the current state, a, of the realization is neither absorbing nor
vanishing, and 3) r(v)a = 0. If Ta < t denotes the sum of the sampled sojourn times in the states of
the current realization up to entry into state a and TU

a < t denotes the sum of the sampled sojourn
times in the up states of the current realization up to entry into state a, the transition is forced by
limiting the sojourn time in state a to th(a) = min{TU

a + (1− p)t− Ta, t− Ta}. This is achieved
by changing the probability distribution function of the random variable “sojourn time in state a”

from F (u) = 1 − e−λ
(v)
a u, u ≥ 0, to F ′(u) = (1 − e−λ

(v)
a u)/(1 − e−λ

(v)
a th(a)), 0 ≤ u ≤ th(a).

For each realization, the sample of the estimator is 0 if the sum of the sampled sojourn times in
up states during the time interval [0, t] is ≤ pt and otherwise is 1 multiplied, if one or more transi-
tions have been forced, by a factor that takes account of those forced transitions. If F denotes the
collection of (possibly repeated) states of the realization where transitions have been forced, that

factor is
∏

b∈F (1− e−λ
(v)
b th(b)). The method uses the 2002-version of the RNG MT19937 [17].

68 4 Measures

To estimate the measure IAVCD(t, p) for a model named, say, “model”, the user has to follow
the following steps:

1. Compile the model by typing “m2build model”. (See Section 1.2, page 14.)

2. Execute the model by typing “model.exe” (see Section 1.3, page 16) and, then, in the
ensuing interaction:

(a) Assign values to the parameters of the model if any.

(b) Choose the task “Estimate a measure using simulation”.

(c) Choose the measure “Interval Availability Complementary Distribution

(IAVCD(t,p))”.

(d) Choose the simulation method ‘Independent Realizations with Forced

Transitions of the Cumulative Up Time”.

(e) Assign values to the parameters controlling the method. These parameters are, in the
order in which the user will be prompted for them in the interaction:

• Confidence level as a decimal value (e.g., 0.99).

• Allowed relative half-width of the confidence interval.

• Whether the RNG is to be initialized using a seed or the state of the RNG is to be
read from a file generated in a previous simulation (see Section 1, page 17).

• Value of the seed or name of the file.

• Allowed number of forced transitions.

• Minimum number of realizations for which the estimator is positive.

• Allowed CPU time in seconds (an integer value).

(f) Specify the pair (t, p), t > 0, 0 < p < 1. The pair must be enclosed with parentheses.
For instance, to estimate the measure for t = 1, 000 and p = 0.9, the user could type
“(1000,0.9)”.

(g) Choose between verbose and concise output. (See Section 1.3, page 19.)

Comments:

• If the allowed number of forced transitions is set to a value > 0, the method uses the standard
normal approximation confidence interval. Otherwise, the method uses the Clopper-Pearson
confidence interval [31].

• An error occurs and the simulation is aborted with an explanatory message if:

– In a realization, there is a state for which the function check state returns 0.

– One or more instantaneous actions get enabled in the state specified by means of the
start state construct.

– In a realization, there is a state in which two or more instantaneous actions get enabled.

– In a realization, there is a vanishing state whose reward rate is not a finite C double

or a non-vanishing state whose reward rate is not a finite C double ≥ 0.

4.6 Expected Cumulative Reward Till Exit of a subset of states 69

– In a realization, there is a state in which it gets enabled a (non instantaneous) action
whose rate is not a finite C double > 0.

– In a realization, there is a state in which it gets enabled a response whose probability
is not > 0 and ≤ 1.

– In a realization, there is a state in which it gets enabled a (non instantaneous) action-
response pair such that the product of the action’s rate and the response’s probability
is not a finite C double > 0.

– In a realization, there is a self-transition.

– In a realization, there is a cycle of vanishing states.

– In a realization, there is a non-vanishing state whose reward rate is neither 0 nor 1.

4.6 Expected Cumulative Reward Till Exit of a subset of states

For the measure to be well-defined, Ω must be of the form Ω = B ∪ {a}, B ̸= ∅, where all states
in the subset B are transient and a is an absorbing state. From a user’s perspective, X must have a
unique absorbing state. Such a state will be regarded as state a and the remaining states will make
up the subset B.

The measure is defined as the expected value of the random variable “reward accumulated by
X till exit of B”. Formally:

ECRTE = E

[∫ T

0
rX(t) dt

]
,

where T = min{t ≥ 0 : X(t) /∈ B}. It is assumed that the reward rate of each state of B is ≥ 0.
However, rewarded CTMC models with negative reward rates in B can be dealt with by shifting
the reward rates by a positive amount d so that the new reward rates r′i = ri+d, i ∈ B are all ≥ 0.
Calling ECRTE′ the expected cumulative reward till exit of B of the model with shifted reward
rates and calling MTTE the expected cumulative reward till exit of B of a rewarded CTMC with
reward rates equal to 1 in all states in B (which has the meaning of mean time till exit of B), we
have ECRTE = ECRTE′ − d×MTTE. Rewarded CTMCs with impulse rewards ri,j which are
earned each time X makes a transition from state i to state j can be also accommodated by adding
the contribution λi,jri,j to the reward rate associated with state i. The mapping requires redefining
the measure as

ECRTE = E [reward accumulated by X in [0, T]]

and is justified in Appendix E
From a modeling point of view, X can be seen as a rewarded CTMC keeping track of the

behavior till exit from B of a larger rewarded CTMC Y actually modeling the system under study.
Formally, X can be defined from Y as

X(t) =

{
Y (t) if Y (τ) ∈ B, 0 ≤ τ ≤ t ,

a otherwise .

The state diagram of X can be obtained from the state diagram of Y by deleting the states not in
B, adding the absorbing state a, and directing to a the transition rates from states in B to states

70 4 Measures

not in B. The initial probability distribution of X is related to the initial probability distribution
of Y by αi = P [Y (0) = i], i ∈ B, αa = P [Y (0) /∈ B], and X has associated with the states
i ∈ B the same reward rates as Y . With that interpretation, ECRTE is just the expected value of
the reward accumulated by Y till exit from B.

As an example of the ECRTE measure, assume that a rewarded CTMC Y models a fault-
tolerant system that can be either up or down, that B is the subset of states of Y in which the
system is up, and that each state in B has a reward rate equal to 1. Then, the value of the measure
ECRTE for X would be the mean time to failure of the system.

Let τ = (τi)i∈B . As shown in Appendix E, computation of the measure involves solving the
non-singular linear system

τ TAB,B = −(αB)
T
. (4.7)

Let B1, . . . , Bn denote the transient classes of states of X , so that B = ∪n
k=1Bk, In METFAC-2.1,

if n > 1, the matrix AB,B is permuted into block upper triangular form

AB,B =

AB1,B1 AB1,B2 · · · AB1,Bn

AB2,B2 · · · AB2,Bn

. . .
...

ABn,Bn

 .

and the solution τ T = ((τ 1)
T
, . . . , (τn)T) of (4.7) is obtained by solving, for increasing k starting

at k = 1, the non-singular linear systems

(τ k)
T
ABk,Bk = −(αBk)

T −
k−1∑
j=1

(τ j)
T
ABj ,Bk , 1 ≤ k ≤ n . (4.8)

Available numerical methods for computing this measure are the same as those offered to solve
the non-singular linear systems involved in the computation of the measure ESSRR (Section 4.2,
pages 47–49):

• LU Decomposition (LUD).

• Gauss-Seidel (GS).

• Block Gauss-Seidel (BGS).

• Adaptive Successive Overrelaxation (ASOR).

• Adaptive Generalized Minimal Residual (AGMRES).

• Accelerated Gauss-Seidel (acc GS).

• Accelerated Adaptive Successive Overrelaxation (acc ASOR).

Method BGS requires the user to identify the blocks of states using the function with prede-
fined name and prototype block as explained on page 47 save that now, a block consists of all the
states of the transient class of states of X for which the function returns the same value.

Methods acc GS and acc ASOR require the user to identify pivot states by means of the func-
tion with predefined name and prototype pivot as explained on page 49.

4.6 Expected Cumulative Reward Till Exit of a subset of states 71

To compute the measure ECRTE for a model named, say, “model”, the user has to follow the
following steps:

1. Compile the model by typing “m2build model”. (See Section 1.2, page 14.)

2. Execute the model by typing “model.exe” (see Section 1.3, page 16) and, then, in the
ensuing interaction:

(a) Assign values to the parameters of the model if any.

(b) Choose the task “Compute a measure using numerical methods”.

(c) Choose the measure “Expected Cumulative Reward Till Exit of a subset

of states (ECRTE)”.

(d) Choose the numerical method.

(e) If the chosen method is GS, BGS, ASOR, acc GS, or acc ASOR, set the relative tol-
erance to solve each linear system; if the chosen method is AGMRES, set the absolute
tolerance to solve each linear system.

(f) Set the allowed CPU time in seconds (an integer value).9

(g) Choose between verbose and concise output. (See Section 1.3, page 19.)

Comments:

• The tool checks automatically whether the selected method can be used and exits providing
an explanatory message if it cannot.

• For all methods save LUD, the non-singular linear systems actually solved are

PBk,Bkxk = −
(
αBk +

k−1∑
j=1

(ABj ,Bk)
T (

diag
(
ABj ,Bj

))−1
xj
)
, 1 ≤ k ≤ n , (4.9)

where PBk,Bk = (ABk,Bk)
T (

diag
(
ABk,Bk

))−1. The solutions of the linear systems (4.8)
are obtained from those of (4.9) using τ k =

(
diag

(
ABk,Bk

))−1
xk. Each linear system

(4.9) is solved as follows. Let xk,l = (xk,li)i∈Bk
denote the solution vector at iteration l,

l ≥ 0, and let ε be a user-given tolerance. The iterations start with xk,0 = 1. For methods
GS, BGS, ASOR, acc GS, and acc ASOR, the stopping criterion is

max
i∈Bk

(∣∣xk,li − xk,l−j
i

∣∣∣∣xk,li

∣∣
)

≤ ε ,

with j = 5 for l < 100, j = 10 for 100 ≤ l < 500, j = 20 for 500 ≤ l < 1000, and j = 50

for l ≥ 1000. Letting qk,l = αBk +
∑k−1

j=1 (A
Bj ,Bk)

T (
diag

(
ABj ,Bj

))−1
x̃j , where x̃j

denotes the computed xj , 1 ≤ j ≤ k − 1, the stopping criterion for method AGMRES is∥∥qk,l +PBk,Bkxk,l
∥∥
2
≤ ε∥∥(diag (ABk,Bk

))−1∥∥
F

∥∥diag (ABk,Bk
)∥∥

∞

× (
∥∥qk,l

∥∥
2
+
∥∥PBk,Bk

∥∥
F

∥∥xk,l
∥∥
2
) .

9This value sets an (approximate) upper limit for the CPU time that can be spent in solving all the involved linear
systems.

72 4 Measures

• Neglecting round-off errors, if there is only one transient class of states in B and the chosen
method is GS, the actual relative error with which the measure is computed can be expected
to be proportional to the user-specified relative tolerance.

• Methods GS and acc GS are guaranteed to converge. Method AGMRES can stagnate and
never reach a solution with the specified relative tolerance and can also break down because
of numerical instability.

• For typical failure/repair rewarded CTMC models of fault-tolerant systems with exponential
failure and repair time distributions and repair in every state with failed components, there
should only be a single class of transient states in B. For those models, it is strongly advised
the use of either acc GS or acc ASOR with a single pivot state equal to the state without
failed components, since for such models those methods with that pivot state will be much
faster than both GS and ASOR and the former will exhibit very slow convergence. For other
types of models, ASOR is usually faster than GS.

At present, only one simulation method is available for estimating the measure. In the interac-
tion with the user, that method is listed under the name “Independent Realizations of the

Expected Cumulative Reward Till Exit”. The method consists in sampling realizations of
the embedded DTMC of X(v) (see Appendix F). The simulation is carried out until: 1) the number
of realizations for which the estimator of the measure is positive is non smaller than a user-given
value, and 2) the relative half-width of the standard normal approximation confidence interval is
non larger than a user-given value. We recall that the specification of the initial probability distri-
bution that can be optionally included in the model specification file (see Section 1.1.1, page 9)
has no effect and the initial probability distribution always used is: Initial probability equal to 1 for
the state specified by means of the start state construct and equal to 0 for the remaining states.
Accordingly, each realization starts at the state specified by means of the start state construct
and ends when the absorbing state a is hit. If V denotes the collection of (possibly repeated) non
vanishing states of the realization, the sample of the estimator is

∑
i∈V r

(v)
i (λ

(v)
i)−1. The method

uses the 2002-version of the RNG MT19937 [17].
To estimate the measure ECRTE for a model named, say, “model”, the user has to follow the

following steps:

1. Compile the model by typing “m2build model”. (See Section 1.2, page 14.)

2. Execute the model by typing “model.exe” (see Section 1.3, page 16) and, then, in the
ensuing interaction:

(a) Assign values to the parameters of the model if any.

(b) Choose the task “Estimate a measure using simulation”.

(c) Choose the measure “Expected Cumulative Reward Till Exit of a subset

of states (ECRTE)”.

(d) Choose the simulation method “Independent Realizations of the Expected

Cumulative Reward Till Exit”

(e) Assign values to the parameters controlling the method. These parameters are, in the
order in which the user will be prompted for them in the interaction:

4.7 Cumulative Reward Distribution Till Exit of a subset of states 73

• Confidence level as a decimal value (e.g., 0.99).

• Allowed relative half-width of the confidence interval.

• Whether the RNG is to be initialized using a seed or the state of the RNG is to be
read from a file generated in a previous simulation (see Section 1, page 17).

• Value of the seed or name of the file.

• Minimum number of realizations for which the estimator is positive.

• Allowed CPU time in seconds (an integer value).

(f) Choose between verbose and concise output. (See Section 1.3, page 19.)

Comments:

• An error occurs and the simulation is aborted with an explanatory message if:

– In a realization, there is a state for which the function check state returns 0.

– One or more instantaneous actions get enabled in the state specified by means of the
start state construct.

– In a realization, there is a state in which two or more instantaneous actions get enabled.

– In a realization, there is a vanishing state whose reward rate is not a finite C double

or a non-vanishing state whose reward rate is not a finite C double ≥ 0.

– In a realization, there is a state in which it gets enabled a (non instantaneous) action
whose rate is not a finite C double > 0.

– In a realization, there is a state in which it gets enabled a response whose probability
is not > 0 and ≤ 1.

– In a realization, there is a state in which it gets enabled a (non instantaneous) action-
response pair such that the product of the action’s rate and the response’s probability
is not a finite C double > 0.

– In a realization, there is a self-transition.

– In a realization, there is a cycle of vanishing states.

– The state specified by means of the start state construct is absorbing.

4.7 Cumulative Reward Distribution Till Exit of a subset of states

For the measure to be well-defined, Ω must be of the form Ω = B ∪ {a}, B ̸= ∅, where all states
in the subset B are transient and a is an absorbing state. From a user’s perspective, X must have a
unique absorbing state. Such a state will be regarded as state a and the remaining states will make
up the subset B.

The measure is defined as the probability distribution function of the random variable “reward
accumulated by X till exit of B”. Formally,

CRDTE(s) = P

[∫ T

0
rX(t) dt ≤ s

]
,

74 4 Measures

where T = min{t ≥ 0 : X(t) = a}.
Let B+ = {i ∈ B : ri > 0} and B− = {i ∈ B : ri < 0}. If B− = ∅ and s < 0, we

have CRDTE(s) = 0. If B− = ∅ and s ≥ 0, the measure can be formalized as a particular case
of the measure ETRR(t) considered in Section 4.1 for a modified rewarded CTMC X ′ with state
space B+ ∪ {a}. The CTMC X ′ is obtained from X by: 1) “deleting” the states in B0 = {i ∈
B : ri = 0} using Gaussian elimination without subtractions as described in [35], and 2) dividing
by ri the elements ci,j , i ∈ B+ of the infinitesimal generator of the rewarded CTMC with states
in B0 deleted so that holding times in the new CTMC X ′ have identical probability distributions
to the rewards earned in those holding times in the CTMC with states in B0 deleted and unscaled
infinitesimal generator elements. Then, CRDTE(s) = P [X ′(s) = a], which is equal to the
measure ETRR(s) of X ′ with reward rate structure r′a = 1, r′i = 0, i ̸= a. The mapping has been
justified in [36].

Available numerical methods for computing the measure CRDTE(s) are those offered to com-
pute the measure ETRR(t) (Section 4.1, pages 40–42) that do not require X to be irreducible and
a method to deal with the case B+ ̸= ∅, B− ≠ ∅:

• Standard Randomization (SR).

• Standard Randomization with control of the Relative Error (SRRE).

• Randomization with Quasistationarity Detection (RQSD).

• Regenerative Randomization (RR).

• Regenerative Randomization with Laplace Transform Inversion (RRLT).

• Bounding Regenerative Randomization (BRR).

• Explicit Runge-Kutta ODE Solver (ERKODES).

• Implicit Runge-Kutta ODE Solver (IRKODES).

• Algorithm for Positive and Negative Reward Rates (CRDTE-PNRR).

Method CRDTE-PNRR is based on a randomization construct with different randomization
rates for the states in the sets B+ and B−. The method is described in detail in [35].

The available methods can only be applied if the following conditions are fulfilled:

• Methods SR, SRRE: B− = ∅.

• Method RQSD: B− = ∅ and the CTMC X ′ satisfies the conditions given in Section 4.1,
page 42 with S = B+, f1 = a, and A = 1. (These conditions amount to the fact that in X ′,
the states in B+ make up a transient class of states and αB+ > 0.)

• Methods RR, RRLT: B− = ∅ and the CTMC X ′ and the regenerative state r satisfy the
conditions given in Section 4.1, page 42 with S = B+, f1 = a, and A = 1. (These
conditions require

∣∣B+

∣∣ ≥ 2 and r ∈ B+.)

4.7 Cumulative Reward Distribution Till Exit of a subset of states 75

• Method BRR: B− = ∅ and the CTMC X ′ and the regenerative state r satisfy the conditions
given in Section 4.1, page 42 with S = B+ f1 = a, and A = 1. (These conditions require∣∣B+

∣∣ ≥ 2 and r ∈ B+.) Moreover, denoting by λ′
i the output rate of state i in X ′, the

equalization parameter D must satisfy 1 ≤ D < maxi∈B+−{r} λ
′
i/mini∈B+−{r} λ

′
i. The

bounds become tighter and computationally more costly as D increases.

• Methods ERKODES, IRKODES: B− = ∅.

• Method CRDTE-PNRR: B− ̸= ∅ and B+ ̸= ∅.

To compute the measure CRDTE(s) for a model named, say, “model”, the user has to follow
the following steps:

1. Compile the model by typing “m2build model”. (See Section 1.2, page 14.)

2. Execute the model by typing “model.exe” (see Section 1.3, page 16) and, then, in the
ensuing interaction:

(a) Assign values to the parameters of the model if any.

(b) Choose the task “Compute a measure using numerical methods”.

(c) Choose the measure “Cumulative Reward Distribution Till Exit of a

subset of states (CRDTE(s))”.

(d) Choose the numerical method.

(e) Assign values to the parameters controlling the chosen numerical method. These pa-
rameters are, in the order in which the user will be prompted for them in the interaction:

• SR: Allowed absolute error and allowed CPU time in seconds (an integer value).

• SRRE: Allowed relative error and allowed CPU time in seconds.

• RSD, RQSD, RR: Allowed absolute error and allowed CPU time in seconds.

• RRLT: Absolute tolerance.

• BRR: Bounds that have to be computed (lower bound, upper bound or both),
equalization parameter (the larger the parameter, the tighter and more computa-
tionally costly the bounds will be), allowed absolute error, and allowed CPU time
in seconds.

• ERKODES: Order of the ODE solver (either 5 or 7), absolute tolerance, and
allowed CPU time in seconds.

• IRKODES: Order of the ODE solver (either 3, 5, 7, 9, or 11), absolute tolerance,
and allowed CPU time in seconds.

• CRDTE-PNRR: Allowed absolute error and allowed CPU time in seconds.

(f) Define the grid of time abscissae s at which the measure has to be computed. (See
Section 1.3, page 18.)

(g) Choose between verbose and concise output. (See Section 1.3, page 19.)

76 4 Measures

Comments:

• The tool checks automatically whether the selected method can be used and exits providing
an explanatory message if the method cannot.

• For methods SR, SRRE, RQSD, RR, RRLT, BRR, ERKODES, and IRKODES, the measure
is obtained as the value of ETRR(s) for the CTMC X ′ with its reward rate structure (r′a = 1,
r′i = 0, i ̸= a).

• The case B− ̸= ∅, B+ = ∅, which is not covered by any of the available methods, can be
dealt with by reversing the sign of the negative reward rates so that the new reward rates
r∗i =

∣∣ri∣∣, i ∈ B are all ≥ 0. Calling CRDTE∗(s) the probability distribution function of
the reward accumulated till exit of B of the model with modified reward rates r∗i , we have
[35]

CRDTE(s) =

{
1 if s ≥ 0

1− CRDTE∗(−s) if s < 0
.

• Neglecting round-off errors, in methods SR, SRRE, RQSD, RR, BRR, and CRDTE-PNRR
the error with which the measure or bounds for it are computed is guaranteed to be non
greater than the specified allowed error. In the remaining methods, the absolute error with
which the measure is computed can be larger than the specified absolute tolerance.

• Let ρ = maxi∈Ω′ λismax, where Ω′ denotes the state space of X ′ and smax is the largest
value of s for which the measure has to be computed. For small values of ρ, method
ERKODES can be faster than the remaining methods. For large values of ρ, methods RQSD,
RR, RRLT, BRR, and IRKODES can be significantly faster than methods SR, SRRE, and
ERKODES (the CPU time required by methods SR and SRRE is approximately directly
proportional to ρ). For very large values of ρ, method IRKODES can be the fastest one.

• Selecting an appropriate regenerative state for methods RR, RRLT, and BRR is a deli-
cate issue. As a general rule, the regenerative state should be a state visited often by the
randomized discrete-time Markov chain of X ′ with randomization rate slightly larger than
maxi∈Ω′ λi. When the choice is not very clear, the user should be aware that a “bad” se-
lection for the regenerative state can degrade severely the performance of the methods. See
[5, 1, 6, 7] for some types of models for which a good selection for the regenerative state
exists.10

• The method RRLT can be significantly less costly than the method RR when in the latter the
computational cost of the second phase of the method (solution of the truncated transformed
rewarded CTMC using method SR) dominates the computational cost of the first phase
(generation of the truncated transformed rewarded CTMC).

The available simulation methods for estimating the measure are:

• Independent Realizations with Forced Transitions of the Cumulative Reward Till Exit
(IRFTCRTE).

10The statements made in these references should be applied to the CTMC X ′.

4.7 Cumulative Reward Distribution Till Exit of a subset of states 77

• Independent Realizations of the Cumulative Reward Till Exit (IRCRTE).

Method IRFTCRTE assumes B− = ∅. The method consists in sampling realizations of X(v) until:
1) the number of realizations for which the estimator of the measure is positive is non smaller
than a user-given value, and 2) the relative half-width of the confidence interval is non larger than
a user-given value. The samples are generated using the interpretation of X(v) in terms of its
embedded DTMC described in Appendix F. We recall that the specification of the initial proba-
bility distribution that can be optionally included in the model specification file (see Section 1.1.1,
page 9) has no effect and the initial probability distribution always used is: Initial probability equal
to 1 for the state specified by means of the start state construct and equal to 0 for the remain-
ing states. Accordingly, each realization starts at the state specified by means of the start state

construct and ends when the absorbing state a is hit or the sampled cumulative reward, R, is > s.
During a realization, a transition is forced whenever: 1) the number of transitions that have been
forced up to that point throughout the simulation has not yet reached a user-given limit, 2) the
current state, c, of the realization is not vanishing, 3) r(v)c > 0, and 4) Rc < s, where Rc denotes
the sampled cumulative reward in the current realization up to entry into state c. The transition
is forced by limiting the sojourn time in state c to th(c) = (s − Rc)/r

(v)
c . This is achieved by

changing the probability distribution function of the random variable “sojourn time in state c”

from F (u) = 1 − e−λ
(v)
c u, u ≥ 0, to F ′(u) = (1 − e−λ

(v)
c u)/(1 − e−λ

(v)
c th(c)), 0 ≤ u ≤ th(c).

For each realization, the sample of the estimator is 0 if R > s and otherwise is 1 multiplied, if
one or more transitions have been forced, by a factor that takes account of those forced transitions.
If F denotes the collection of (possibly repeated) states of the realization where transitions have

been forced, that factor is
∏

d∈F (1 − e−λ
(v)
d th(d)). The method uses the 2002-version of the RNG

MT19937 [17].
Method IRCRTE does not impose any restriction on the reward rates of the states in B but is

intended for the case B+ ̸= ∅, B− ̸= ∅. The method consists in sampling realizations of X until:
1) the number of realizations for which the estimator of the measure is positive is non smaller than
a user-given value, and 2) the relative half-width of the Clopper-Pearson [31] confidence interval
is non larger than a user-given value. Again, the samples are generated using the interpretation of
X(v) in terms of its embedded DTMC and the initial probability distribution always used is: Initial
probability equal to 1 for the state specified by means of the start state construct and equal to
0 for the remaining states. Accordingly, each realization starts at the start state and ends when the
absorbing state a is hit. For each realization, the sample of the estimator is 0 if R > s and is 1
otherwise. The method uses the 2002-version of the RNG MT19937 [17].

To estimate the measure CRDTE for a model named, say, “model”, the user has to follow the
following steps:

1. Compile the model by typing “m2build model”. (See Section 1.2, page 14.)

2. Execute the model by typing “model.exe” (see Section 1.3, page 16) and, then, in the
ensuing interaction:

(a) Assign values to the parameters of the model if any.

(b) Choose the task “Estimate a measure using simulation”.

78 4 Measures

(c) Choose the measure “Cumulative Reward Distribution Till Exit of a

subset of states (CRDTE(s))”.

(d) Choose the simulation method.

(e) Assign values to the parameters controlling the chosen simulation method. These pa-
rameters are, in the order in which the user will be prompted for them in the interaction:

• IRFTCRTE:

– Confidence level as a decimal value (e.g., 0.99).

– Allowed relative half-width of the confidence interval.

– Whether the RNG is to be initialized using a seed or the state of the RNG
is to be read from a file generated in a previous simulation (see Section 1,
page 17).

– Value of the seed or name of the file.

– Allowed number of forced transitions.

– Minimum number of realizations for which the estimator is positive.

– Allowed CPU time in seconds (an integer value).

• IRCRTE:

– Confidence level as a decimal value (e.g., 0.99).

– Allowed relative half-width of the confidence interval.

– Whether the RNG is to be initialized using a seed or the state of the RNG is
to be read from a file generated in a previous simulation.

– Value of the seed or name of the file.

– Minimum number of realizations for which the estimator is positive.

– Allowed CPU time in seconds.

(f) Introduce the value of the abscissa of interest s, which for method IRFTCRTE must
be positive.

(g) Choose between verbose and concise output. (See Section 1.3, page 19.)

Comments:

• If B− = ∅, both methods can be used. However, the user is strongly advised to use method
IRFTCRTE because it can be much faster than method IRCRTE.

• If the chosen method is IRFTCRTE and the allowed number of forced transitions is set
to a value > 0, the method uses the standard normal approximation confidence interval.
Otherwise, the method uses the Clopper-Pearson confidence interval.

• An error occurs and the simulation is aborted with an explanatory message if:

– In a realization, there is a state for which the function check state returns 0.

– One or more instantaneous actions get enabled in the state specified by means of the
start state construct.

– In a realization, there is a state in which two or more instantaneous actions get enabled.

4.7 Cumulative Reward Distribution Till Exit of a subset of states 79

– In a realization, there is a vanishing state whose reward rate is not a finite C double

or a non-vanishing state whose reward rate is not a finite C double ≥ 0 (method
IRFTCRTE) or not a finite C double (method IRCRTE).

– In a realization, there is a state in which it gets enabled a (non instantaneous) action
whose rate is not a finite C double > 0.

– In a realization, there is a state in which it gets enabled a response whose probability
is not > 0 and ≤ 1.

– In a realization, there is a state in which it gets enabled a (non instantaneous) action-
response pair such that the product of the action’s rate and the response’s probability
is not a finite C double > 0.

– In a realization, there is a self-transition.

– In a realization, there is a cycle of vanishing states.

– The state specified by means of the start state construct is absorbing.

80 4 Measures

Appendix A

Installing the Tool

This appendix describes how to install the tool and how to make it accessible to a user. To install
and use the tool, the programming environment must provide:

1. A C compiler compliant with the ISO/IEC 9899:1999 standard (C99) with enabled support
for the IEC 60559:1989 floating-point standard (also designated as ANSI/IEEE 754-1985).

2. A C-shell (csh).

3. The utilities ar to create and modify archives, ranlib to generate indices to archives, nm to
list symbols from object files, and grep to search for a pattern in a file.

4. The functions getrusage to measure CPU times, sigemptyset and sigaction to handle
signals, and timer create, timer settime, and timer delete to handle timers, all with
the syntax and semantics described in the POSIX.1-2001 standard (IEEE Std 1003.1-2001).

The tool is provided as a tar file named metfac21.tar.gz that has been compressed with the
gzip utility. To install METFAC-2.1, first set up three environment variables named METFAC2,
METFAC2 CC, and METFAC2 CC FLAGS. The environment variable METFAC2 must be set to hold the
path to the directory where the tool is to be installed. That directory must exist and you must have
writing permission on it. The variable METFAC2 CC must be set to hold the path to the C compiler.
Finally, the variable METFAC2 CC FLAGS must be set to hold appropriate flags for the C compiler.
These flags should at least enable the support for the C99 standard and that the mathematical and
the librt (realtime) library are searched in the linking stage of the compilation process.1

After setting the above variables, unfold the file metfac21.tar.gz by typing

gzip -d metfac21.tar.gz

tar -xvf metfac21.tar

and next type

chmod u+x m2setup

m2setup

1For the GNU compiler gcc, the flag enabling support for the C99 standard is “-std=c99” (or
“-std=iso9899:1999”); the flag that enables that the mathematical library is searched in the linking stage is “-lm”;
and the flag that enables that the librt library is searched in the linking stage is “-lrt”.

82 A Installing the Tool

You should get several messages as the installation proceeds and, finally, the message

++m2setup terminated successfully

(The following files should be present in ...:

preproc

libslvr.a

met_block.o

met_check_state.o

met_pivot.o

met_regstat.o

met_subset.o

m2build

guide.pdf

README

INSTALL)

informing you that the installation has terminated successfully. In that case, the following files
should be present in the directory pointed to by the environment variable METFAC2:

• preproc: preprocessing module of the tool. (See Section 1, page 15 and Appendix B,
page 83.)

• libslvr.a, met block.o, met check state.o, met pivot.o, met regstat.o,
met subset.o: model-independent core of the tool.

• m2build: utility for model compilation. (See Section 1, page 14.)

• guide.pdf: this document in Portable Document Format.

• README: brief description of the tool.

• INSTALL: the installation instructions contained in this section.

The tool is made accessible to a user by first setting the environment variables METFAC2,
METFAC2 CC, and METFAC2 CC FLAGS as previously explained and next adding the string
$METFAC2 to the user’s path.

Comments:

• The installation utility m2setup is a C-shell script and hence the need of that shell to install
the tool. The script assumes that the full path to the shell is /bin/csh and makes use of
the C compiler and the following system utilities: ar, ranlib, pwd, cp, mv, and rm. If the
full path to the shell is not /bin/csh or any of those utilities is not in the user’s path, the
installation of the tool will fail.

• The model compilation utility m2build is also a C-shell script and thus the need of that shell
to use the tool. The script assumes that the full path to the shell is /bin/csh and makes use
of the C compiler and the following system utilities: ar, nm, and grep. If the full path to the
shell is not /bin/csh or any of those utilities is not in the user’s path, model compilation
will fail.

Appendix B

The Preprocessor

The analysis and translation into C code of a model specification file (usually called name.spec)
has been implemented in METFAC-2.1 as a separate module called preproc. The module can be
invoked from outside the tool on a model specification file, say spec file, by typing

preproc spec_file

If the model specification file is correct, preproc will generate two files called, by default,
model.c and model.h. These files contain C code described in, respectively, Section B.1 and
Section B.2. The names and, up to some extend, the contents of these output files can be changed
by invoking preproc with appropriate flags as explained below.

The first argument of preproc must be the name of the model specification file. The following
optional flags can be given next in any order: -c, -e, -h, -n, -p, -v, -w, and -y. Flags -c, -h,
-n, and -p must be followed by a non-empty name. Flag -y is for maintenance. The effect of the
remaining flags is as follows.

-c file name Creates file file name instead of model.c.

-e Introduces some changes in the above file or model.c. (See Sec-
tion B.1.)

-h file name Creates file file name instead of model.h.

-n model name Sets to model name the name of the model that will be returned by the
appropriate function defined in either model.c or the file whose name
is specified by means of the flag -c. (See Section B.1.)

-p file name Name of the file to which lexical and syntactical error messages and
information messages are printed. The default is to print those messages
to the standard error stream.

-v Prints the version number of the preprocessor to the standard output
stream and exits.

-w Suppresses warning messages.

Neither spec file nor any of the names given after the flags -c, -h, -n, or -p may begin with a
dash (-).

84 B The Preprocessor

By typing

preproc -flags

preproc prints to the standard output stream detailed information about its usage and exits.
Apart from checking the model specification file to be lexically, syntactically, and semantically

correct, preproc performs some checks in order to increase the reliability of the specification,
issuing warning messages in some cases. Specifically, preproc will issue a warning message in
the following cases:

1. The two operands of any of the operators “>”, “>=”, “<”, “<=”, “==”, “!=”, “&&”, or “||”
are of different type.

2. The right-hand side of the operator “/=” is of type int. (This might result in undesired
truncation.)

3. Both operands of the operator “/“ are of type int. (This might result in undesired trunca-
tion.)

4. A model parameter is declared but not referenced.

5. A state variable only appears in the start state construct.

6. A state variable never appears in any next state construct.

If the model specification file has any error, no output file is generated apart from the file where
the user has instructed preproc to print error messages through the -p flag as explained before.

B.1 File model.c

The file contains 1) “#include” directives for the C header files string.h, float.h, and math.h,
2) declarations of the model-specific functions actually referenced within the model specification,
and 3) definitions of several C functions detailed next. In the description of each such C function
that follows, we will use input and output to distinguish between input and output parameters,
and will denote by nsv the number of state variables of the model specification file, by nac insac the
number of actions plus the number of instantaneous actions of the model specification file, and by
nres the number of responses of the model specification file. Also, it must be taken into account
that:

• Actions, instantaneous actions, and responses without identifier are assigned the identifier
“nolabel”.

• Actions and instantaneous actions are indexed 1, 2, . . . in the order they appear in the model
specification file. (I.e., actions are not indexed separately from instantaneous actions.)

• Responses are indexed 1, 2 . . . within each action in the order they appear in the model
specification file. Actions without responses and instantaneous actions are always dealt
with as having one response with identifier “nolabel”, probability 1, and index 1.

B.1 File model.c 85

The C functions defined in the file model.c are the following:

void time_stamp_(char *date_[], char *time_[])

returns the time and date on which the model specification file was compiled

date [] (output) pointer to an array of characters holding the compilation date
as given by the C macro DATE ; the array is static and therefore
should not be freed after calling the function

time [] (output) pointer to an array of characters holding the compilation time
as given by the C macro TIME ; the array is static and therefore
should not be freed after calling the function

extern char *modname(void)

returns a pointer to an array of characters that holds the name given after the flag -n or the
name of the model specification file if the preprocessor was invoked without that flag; the
array is static and therefore should not be freed after calling the function

void

modinfo_(int *n_ipar_, int *n_dpar_, int *n_sv_, int *n_func_, int *n_act_,

int *n_insact_, int *n_resp_, char **parsymb_[], int *partype_[],

char **svsymb_[], char **proto_[], char **actsymb_[],

int *actinsflag_[], int *nrespofact_[], char **respsymb_[])

returns information about the model
n ipar (output) number of parameters declared as int

n dpar (output) number of parameters declared as double

n sv (output) number of state variables (i.e., nsv)

n func (output) number of external functions

n act (output) number of actions plus number of instantaneous actions
(i.e., nac insac)

n insact (output) number of instantaneous actions

n resp (output) number of responses (i.e., nres)

parsymb [] (output) NULL if the model does not have parameters; otherwise,
pointer to an array that holds, starting at location 0, pointers to ar-
rays of characters holding the identifiers of the model parameters,
given in the order they have been declared; the array is static and
therefore should not be freed after calling the function

86 B The Preprocessor

partype [] (output) NULL if the model does not have parameters; other-
wise, pointer to an array that holds in location i, 0 ≤ i ≤
n ipar +n dpar − 1, the value 0 if the parameter parsymb [i]

has been declared as int and the value 1 otherwise; the array is
static and therefore should not be freed after calling the function

svsymb [] (output) pointer to an array that holds, starting at location 0, point-
ers to arrays of characters holding the identifiers of the state vari-
ables, given in the order they have been declared; the array is static
and therefore should not be freed after calling the function

proto [] (output) NULL if the model does not have external functions; other-
wise, pointer to an array that holds, starting at location 0, pointers to
arrays of characters holding the prototypes of these functions, given
in the order in which the functions have been declared; the array is
static and therefore should not be freed after calling the function

actsymb [] (output) pointer to an array that holds, starting at location 0, point-
ers to arrays of characters holding the identifiers of the actions and
the instantaneous actions, given in the order in which actions and in-
stantaneous actions appear in the model specification file; the array
is static and therefore should not be freed after calling the function

actinsflag [] (output) pointer to an array that holds at location i, 0 ≤ i < n act ,
the value 1 if actsymb [i] corresponds to an instantaneous action
and the value 0 otherwise; the array is static and therefore should
not be freed after calling the function

nrespofact [] (output) pointer to an array that holds, starting at location 0, the
number of responses of each action and instantaneous action, given
in the order in which actions and instantaneous actions appear in the
model specification file; the array is static and therefore should not
be freed after calling the function

respsymb [] (output) pointer to an array that holds, starting at location 0, point-
ers to arrays of characters holding the identifiers of responses of
actions and instantaneous actions, given in the order in which ac-
tions and responses appear in the model specification file; the array
is static and therefore should not be freed after calling the function

void

succes_(int ipar_[], double dpar_[], int sv_[], int *naact_,

int *nainsact_, int aact_[], int aactinsflag_[],

int ptar_[], int aresp_[], int ptfs_[], int fsv_[])

obtains the list of states reached from a given state

B.1 File model.c 87

ipar [] (input) starting at location 0, values of the int parameters, given in
the order they have been declared

dpar [] (input) starting at location 0, values of the double parameters, given
in the order they have been declared

sv [] (input) starting at location 0, values of the state variables for the given
state, given in the order they have been declared

*naact (output) number of actions plus number of instantaneous actions en-
abled (active) in the given state

*nainsact (output) number of instantaneous actions enabled in the given state

aact [] (output) in locations 0 through *naact − 1, indices of actions and
instantaneous actions enabled in the given state ordered from lower to
higher; the array aact [] must exist before calling the function and
its size must be ≥ nac insac

aactinsflag [] (output) in location i, 0 ≤ i ≤ *nainsact − 1, the value 1 if
aact [i] is an instantaneous action and the value 0 otherwise; the ar-
ray aactinsflag [] must exist before calling the function and its
size must be ≥ nac insac

ptar [] (output) in locations 0 through *naact , locations in the array
aresp [] below of the first enabled response of the actions and in-
stantaneous actions enabled in the given state; the array ptar [] must
exist before calling the function and its size must be ≥ nac insac + 1

aresp [] (output) in locations ptar [i − 1] through ptar [i] − 1, 1 ≤ i ≤
*naact , indices of enabled responses of the ith action or instanta-
neous action enabled in the given state, ordered from lower to higher;
the array aresp [] must exist before calling the function and its size
must be ≥ nres

ptfs [] (output) in locations 0 through *naact − 1, locations in the array
fsv [] below of the the descriptions (in terms of values of the state
variables) of the states reached from the given state; the array ptfs []

must exist before calling the function and its size must be ≥ nac insac

fsv [] (output) in locations ptfs [i−1]+(j−1)∗nsv+k−1, 1 ≤ k ≤ nsv,
with 1 ≤ i ≤ *naact and 1 ≤ j ≤ ptar [i]−ptar [i−1], values of
the state variables (in the order they have been declared) for the state
reached from the given state as a result of the jth enabled response
of the ith action or instantaneous action enabled in the given state; the
array fsv [] must be allocated before calling the function and its size
must be ≥ nres × nsv

88 B The Preprocessor

void start_(int ipar_[], double dpar_[], int sv_[])

obtains the description of the state specified through the start state construct

ipar [] (input) starting at location 0, values of the int parameters, given in
the order they have been declared

dpar [] (input) starting at location 0, values of the double parameters, given
in the order they have been declared

sv [] (output) starting at location 0, values of the state variables for the
state specified through the start state construct, given in the order
they have been declared; the array sv [] must exist before calling the
function and its size must be ≥ nsv

double

rates_(int ipar_[], double dpar_[], int sv_[], int act_, int *err_)

returns the rate of a given action or instantaneous action in a given state (if the action is in-
stantaneous, the returned value is the one yielded by the C macro INFINITY), or the (special)
value yielded by the C99 function nan if the index of the action or instantaneous action is
not correct

ipar [] (input) starting at location 0, values of the int parameters, given in
the order they have been declared

dpar [] (input) starting at location 0, values of the double parameters, given
in the order they have been declared

sv [] (input) starting at location 0, values of the state variables for the given
state, given in the order they have been declared

act (input) index of the action or instantaneous action

*err (output) 1 if the index of the action or instantaneous action is not
correct, i.e., either act < 1 or act > nac insac; otherwise, 0

double reward_(int ipar_[], double dpar_[], int sv_[])

returns the reward rate of a given state

ipar [] (input) starting at location 0, values of the int parameters, given in
the order they have been declared

dpar [] (input) starting at location 0, values of the double parameters, given
in the order they have been declared

B.1 File model.c 89

sv [] (input) starting at location 0, values of the state variables for the given
state, given in the order they have been declared

double initprob_(int ipar_[], double dpar_[], int sv_[])

returns the initial probability of a given state as specified by means of the
initial probability construct; if the construct was absent from the model specifica-
tion file, the function returns 1 for the state specified through the start state construct
and 0 for the remaining states

ipar [] (input) starting at location 0, values of the int parameters, given in
the order they have been declared

dpar [] (input) starting at location 0, values of the double parameters, given
in the order they have been declared

sv [] (input) starting at location 0, values of the state variables for the given
state, given in the order they have been declared

double prob_(int ipar_[], double dpar_[], int sv_[], int act_, int resp_,

int *err_)

returns the probability of a given response of a given action or instantaneous action in a
given state, or the (special) value yielded by the C99 function nan if the index of the action
or instantaneous action or the index of the response are not correct

ipar [] (input) starting at location 0, values of the int parameters, given in
the order they have been declared

dpar [] (input) starting at location 0, values of the double parameters, given
in the order they have been declared

sv [] (input) starting at location 0, values of the state variables for the given
state, given in the order they have been declared

act (input) index of the action or instantaneous action

resp (input) index of the response of the action or instantaneous action

*err (output) 1 if the index of the action or instantaneous action is not
correct, i.e., either act < 1 or act > nac insac, or the index of the
response is not correct, i.e., resp < 1, or resp is larger than the
number of responses of the action or instantaneous action; otherwise,
0

The following C functions are defined only if the preprocessor is invoked with the flag -e.

90 B The Preprocessor

void

actresp_(int ipar_[], double dpar_[], int sv_[], int *naact_,

int *nainsact_, int aact_[], int aactinsflag_[], int ptar_[],

int aresp_[])

obtains for a given state the list of actions and instantaneous actions enabled (active) in the
state and the list of enabled responses of each such action or instantaneous action

ipar [] (input) starting at location 0, values of the int parameters, given in
the order they have been declared

dpar [] (input) starting at location 0, values of the double parameters, given
in the order they have been declared

sv [] (input) starting at location 0, values of the state variables for the given
state, given in the order they have been declared

*naact (output) number of actions plus number of instantaneous actions en-
abled in the given state

*nainsact (output) number of instantaneous actions enabled in the given state

aact [] (output) in locations 0 through *naact − 1, indices of the actions
and instantaneous actions that are enabled in the given state, ordered
from lower to higher; the array aact [] must exist before calling the
function and its size must be ≥ nac insac

aactinsflag [] (output) in location i, 0 ≤ i ≤ *nainsact − 1, the value 1 if
aact [i] is an instantaneous action and the value 0 otherwise; the ar-
ray aactinsflag [] must exist before calling the function and its
size must be ≥ nac insac

ptar [] (output) in locations 0 through *naact , locations in the array
aresp [] below of the first enabled response of the actions and in-
stantaneous actions enabled in the given state; the array ptar [] must
exist before calling the function and its size must be ≥ nac insac + 1

aresp [] (output) in locations ptar [i − 1] through ptar [i] − 1, 1 ≤ i ≤
*naact , indices of enabled responses of the ith action or instanta-
neous action enabled in the given state, ordered from lower to higher;
the array aresp [] must exist before calling the function and its size
must be ≥ nres

int

ar_active_(int ipar_[], double dpar_[], int sv_[], int act_, int resp_)

B.1 File model.c 91

returns 1 if a given action or instantaneous action and a given response of that action or
instantaneous action are correct and enabled in a given state, 0 if the action or instantaneous
action and the response are correct but not enabled in the given state, and −1 otherwise (i.e.,
the index of the action or instantaneous action, act , is < 1 or > nac insac, or the index of the
response, resp , is < 1 or larger than the number of responses of the action or instantaneous
action)

ipar [] (input) starting at location 0, values of the int parameters, given in
the order they have been declared

dpar [] (input) starting at location 0, values of the double parameters, given
in the order they have been declared

sv [] (input) starting at location 0, values of the state variables for the given
state, given in the order they have been declared

act (input) index of the action or instantaneous action

resp (input) index of the response of the action or instantaneous action

int

successor_(int ipar_[], double dpar_[], int sv_[], int act_, int resp_,

int fsv_[])

obtains the state reached from a given state as a result of a given action or instantaneous
action and a given response of that action or instantaneous action without checking whether
the action or instantaneous action and the response are actually enabled in the state; returns
1 if both the index, act , of the action or instantaneous action, and the index, resp , of the
response are correct and 0 if they are not (i.e., act < 1, act > nac insac, resp < 1, or
resp is larger than the number of responses of the action or instantaneous action)

ipar [] (input) starting at location 0, values of the int parameters, given in the order
they have been declared

dpar [] (input) starting at location 0, values of the double parameters, given in the
order they have been declared

sv [] (input) starting at location 0, values of the state variables for the given state,
given in the order they have been declared

act (input) index of the action or instantaneous action

resp (input) index of the response of the action or instantaneous action

fsv [] (output) starting at location 0, values of the state variables (in the order they
have been declared) for the state reached from the given state as a result of the
action or instantaneous action with index act and the response with index
resp ; the array fsv must exist before calling the function and its size must
be ≥ nsv

92 B The Preprocessor

B.2 File model.h

The file model.h defines: 1) the prototypes of all the model-specific functions declared in the
model specification file regardless of whether they are actually referenced within the model spec-
ification file, and 2) a C macro called “DECLARE SYMBOLS”. Typesetting in typewriter font and
enclosing by “ and ” literal text like “this”, the contents of the file can be formally described in
C-pseudocode as follows:

"#ifndef "str;

"#define "str;

""

for (i=1; i<=n_efunc;i++) "extern "proto[i]";";

"#define DECLARE_SYMBOLS \"

if (n_ipar>0) {

"int "iparsymb[1]"=ipar[0]";

for (i=2;i<=n_ipar;i++) {

",\";

iparsymb[i]"=ipar["i-1"]";

}

";\";

}

if (n_dpar>0) {

"double "dparsymb[1]"=dpar[0]";

for (i=2;i<=n_dpar;i++) {

",\";

dparsymb[i]"=dpar["i-1"]";

}

";\";

}

"int "svsymb[1]"=sv[0]";

for (i=2;i<=n_sv;i++) {

",\";

svsymb[i]"=sv["i-1"]";

}

"#endif";

where
str is “model h” if preproc was invoked without the flag -h and otherwise is

the string obtained by replacing each occurrence of a “.” by a “ ” in the
name given after that flag

n efunc is the number of model-specific functions

n ipar is the number of int parameters

n dpar is the number of double parameters

n sv is the number of state variables

proto[i] is the prototype of the ith model-specific function

iparsymb[i] is the identifier of the ith int parameter

dparsymb[i] is the identifier of the ith double parameter

B.2 File model.h 93

svsymb[i] is the identifier of the ith state variable

94 B The Preprocessor

Appendix C

Rewarded CTMCs Description

Apart from computing and estimating a measure, METFAC-2.1 can also generate a description
either verbose or compact in textual form of a rewarded CTMC. The verbose description, which
is intended for model debugging, includes unreachable states,1 vanishing states, self-transitions,
and null transition rates, and is printed to the file name.log (name is a string that identifies the
model). The compact description, which is intended for interfacing METFAC-2.1 with other tools,
is generated after deleting the vanishing states of the model and is printed to a separate file called
name.ctmc. In this section we describe the contents of the file name.log when the user selects
generating a verbose description of a rewarded CTMC and the contents of the file name.ctmc.

C.1 Verbose Description

When the chosen task is to generate a verbose description of the rewarded CTMC, that description
is printed in textual form to the file name.log. Let nstates denote the number of states of the
rewarded CTMC. Typesetting in typewriter font and enclosing by “ and ” literal text like “this”
and using the C99 functions isfinite, isinf, and signbit, the contents of the file can be
formally described in C-pseudocode as follows:

"Model compiled on "d_c" at "t_c;

"Model executed on "d_e" at "t_e;

"";

"Parameters:"

"";

if (n_par==0) "none";

else for (i=1; i<=n_par; i+) parsym[i]"="parval[i];

"";

"Generation:"

"";

"CTMC characteristics:";

"(Warning: vanishing and unreachable states, self transitions, and ";

"null transition rates are included)"

if (all_st_ok) {

1A non-vanishing state i of a CTMC X is said to be unreachable if P [X(t) = i] = 0 for all t ≥ 0. A necessary
and sufficient condition for a state to be unreachable is that its initial probability is null and there does not exist a path
in the state diagram of the CTMC from a state with nonnull initial probability to that state.

96 C Rewarded CTMCs Description

"# states="n_st;

"(# vanishing_states="n_vst")";

"# transition rates="n_tr;

} else {

"# states=n_st (aborted)";

"(# vanishing_states=unknown")";

"# transition rates=unknown";

}

"";

"Spent time in s (user, system, total)="cput_gu", "cput_gs", "cput_gt;

""

"description of states";

"---------------------";

"";

for (i=1; i<=n_st; i++) {

"state="i;

for (j=1; j<=n_sv; j++) {

if (j<n_sv) svsym[j]"="svval[i][j]",";

else svsym[j]"="svval[i][j];

}

"initial_probability="stinitpval[i];

"reward_rate="strwdval[i];

if (all_st_ok) {

if (vanish[i]) "vanishing=yes";

else "vanishing=no";

if (absorb[i]) "absorbing=yes";

else "absorbing=no";

} else {

"vanishing=unknown";

"absorbing=unknown";

}

"block_index="stblkval[i];

"pivot_flag="stpivval[i];

"regenerative_flag="stregvali];

}

""

"action-response and instantaneous action-response pairs";

"---";

""

for (i=1; i<=n_e_st; i++) {

"state="i;

if (n_actact[i]==0 || n_tot_actres[i]==0)

" no action-response or instantaneous action-response pair is enabled in this state";

else {

for (j=1; j<=n_actact[i]; j++) {

if (!instflag[i][j]) " action="actactlabel[i][j]" ("actact[i][j]")";

else " instantaneous_action="actactlabel[i][j]" ("actact[i][j]")";

for (k=1; k<=n_actres[i][j]; k++) {

" response="actreslabel[i][j][k]" ("actres[i][j][k]")";

if (trval[i][j][k]==0)

" next_state=NONE (NULL-RATE TRANSITION)";

else if (i==stidxval[i][j][k])

" next_state=SAME (SELF-TRANSITION)";

else {

C.1 Verbose Description 97

" next_state="stidxval[i][j][k];

if (instflag[i])

" transition_rate=+infinity";

else if (isfinite(trval[i][j][k]))

" transition_rate="trval[i][j][k];

else if (isinf(trval[i][j][k]))

if (!signbit(trval[i][j][k]))

" transition_rate=+infinity";

else

" transition_rate=-infinity";

else

" transition_rate=not a number";

}

}

if (n_actres[i][j]==0)

" response=none";

}

}

}

if (all_st_ok) {

"# states="n_st;

"(# absorbing_states="n_ast", # vanishing_states="n_vst")";

} else

"ABORTED!";

"";

"Total time in s (user, system, total)="cput_tu", "cput_ts", "cput_tt;

where

d c is the date on which the model was compiled

t c is the time of the day on which the model was compiled

d e is the date on which the model was executed

t e is the time of the day on which the model was executed

n par is the number of parameters of the model

parsym[i] is the identifier of the ith parameter

parval[i] is the value of the ith parameter

all st ok is a flag with value 0 if the user-given limit on the number of
states has been reached (Section 3, page 33), or the function
check state returned 0 for some state whether vanishing or
not, or there were one or more instantaneous actions enabled in
the state specified by means of the start state construct, or
there were two or more instantaneous actions enabled in a state
different from the one specified by means of the start state

construct; otherwise, the flag has a non-zero value

n st is the number of generated states (n st = nstates if all st ok ̸=
0 and n st ≤ nstates otherwise)

98 C Rewarded CTMCs Description

n vst is the number of vanishing states

n tr is the number of transition rates

cput gu is the CPU time in user mode spent in generating the rewarded
finite CTMC measured using the function getrusage

cput gs is the CPU time in system mode spent in generating the re-
warded finite CTMC measured using the function getrusage

cput gt cput gu+ cput gs

svsymb[j] is the identifier of the jth state variable

svval[i][j] is the value of the jth state variable for state i

stinitpval[i] is the initial probability of state i

strwdval[i] is the reward rate of state i

vanish[i] is a flag with value 0 if state i is not vanishing and value ̸= 0

otherwise

absorb[i] is a flag with value 0 if state i is not absorbing and value ̸= 0

otherwise

stblkval[i] is the value returned for state i by the function with predefined
name and prototype block (Section 4.2, page 47)

stpivval[i] is “yes” if the function with predefined name and prototype
pivot (Section 4.2, page 49) returned a value ̸= 0 for state i

and is “no” otherwise

stregval[i] is “yes” if the function with predefined name and prototype
regstat (Section 4.1, page 41) function returned a value ̸= 0

for state i and is “no” otherwise

n e st is the number of states for which the set of enabled action-
response and instantaneous action-response pairs has been ac-
tually obtained; that number is equal to n st if all st ok ̸= 0,
is equal to the user-given limit on the number of states if that
limit has been reached and otherwise is equal to the index of the
first state for which one of the following conditions hold: a) The
function check state returns 0 for the state; b) it is the state
specified by means of the start state construct and one or
more instantaneous actions are enabled in it; or c) it is not the
state specified by means of the start state construct and two
or more instantaneous actions are enabled in it

n actact[i] is the number of actions plus the number of instantaneous ac-
tions enabled in state i

C.2 Compact Description 99

n tot actres[i] is the number of responses enabled in state i

insflag[i][j] is a flag with value 0 if the jth action enabled in state i is instan-
taneous and value ̸= 0 otherwise

actactlabel[i][j] is the identifier of the jth action or instantaneous action enabled
in state i

actact[i][j] is the index of the jth action or instantaneous action enabled in
state i

actreslabel[i][j][k] is the identifier of the kth enabled response of the jth action or
instantaneous action enabled in state i

actres[i][j][k] is the index of the kth enabled response of the jth action or in-
stantaneous action enabled in state i

trval[i][j][k] is the transition rate resulting from action or instantaneous ac-
tion actact[i][j] and response actres[i][j][k]

stidxval[i][j][k] is the index of the state reached from state i through transition
rate trval[i][j][k]

n ast is the number of absorbing states

cput tu is the CPU time in user mode spent in carrying out the task mea-
sured using the function getrusage

cput ts is the CPU time in system mode spent in carrying out the task
CTMC measured using the function getrusage

cput tt cput tu+ cput ts

Comments:

• Parameters and state variables are listed in the order in which they have been declared in the
model specification file.

• Actions, instantaneous actions, and responses without identifier are assigned the identifier
“nolabel.”

• Actions and instantaneous actions are indexed 1, 2, . . . in the order they appear in the model
specification file. (I.e., actions are not indexed separately from instantaneous actions.)

• Responses are indexed 1, 2 . . . within each action in the order they appear in the model
specification file. Actions without responses and instantaneous actions are always dealt
with as having one response with identifier “nolabel”, probability 1, and index 1.

C.2 Compact Description

The file name.ctmc contanins a description of the state transition diagram, the initial probability
distribution, and the reward rate structure of the rewarded CTMC with vanishing states deleted.

100 C Rewarded CTMCs Description

The contents of the file can be defined in C-pseudocode as follows:

n_st;

for (i=1; i<=n_st; i++) {

stinitpval[i];

strwdval[i];

}

for (i=1; i<=n_st; i++) {

n_succ[i];

for (j=1; j<=n_succ[i]; j++) {

succindex[i][j];

transrate[i][j];

}

}

where
n st is the number of states, printed as a C long

stinitpval[i] is the initial probability of state i, printed as a C double

strwdval[i] is the reward rate of state i, printed as a C double

n succ[i] is the number of outgoing transition rates of state i, printed as a C
long

succindex[i][j] is the index, k, k ̸= i, of the jth state such that there exists a non-
null transition rate from state i to state k, printed as a C long

transrate[i][j] is the transition rate from state i to state succindex[i][j], printed
as a C double

Comments:

• During the generation, it is checked that:

– the function check state returns a value ̸= 0 for every state;

– no instantaneous action gets enabled in the state specified by means of the
start state construct and at most one instantaneous action gets enabled in any other
state;

– the reward rate of every vanishing state is a finite C double;2

– the rate of every (non instantaneous) action that gets enabled in a state is a finite C
double > 0;

– the probability of every response that gets enabled in a state is > 0 and ≤ 1;

– for each (non instantaneous) action-response pair that gets enabled in a state, the prod-
uct of the action’s rate and the response’s probability is a finite C double > 0;

– there are not self-transitions; and

– the initial probability of every state is ≥ 0 and ≤ 1.

If any of the above tests fails, an error occurs and the generation is aborted with an explana-
tory message.

2I.e., it is neither infinite nor a “not-a-number.”

Appendix D

Error and warning messages

This section describes the error and warning messages that can be generated when a model is
executed.

D.1 Error Messages

There are three types of errors: 1) internal errors, which signal bugs of the tool, 2) resource errors,
which signal exhaustion or unavailability of some resource, and 3) external errors (usually) result-
ing from erroneous input provided by the user. Any error produces one or more error messages
and aborts the execution.

Messages associated with internal errors are printed to the standard error stream and consist
of the header “[metfac2 internal error]” followed by a brief description of the error that
includes the name and the line number of the module of the model-independent core of the tool
where the error happened.

Resource errors have to do with memory exhaustion and failures in opening or closing a file,
writing to or reading from a file, and deleting an auxiliary file. The corresponding messages are
printed to the standard error stream and consist of the header “[metfac2 resource error]”
followed by one of the following strings:

Not enough memory.

File could not be opened.

File could not be closed.

Unable to write to file.

Unable to read from file.

Unable to delete file.

In the last five cases the message also includes a portion File: ’...’, indicating the name of
the involved file.

Messages associated with external errors are printed to the standard output stream and ap-
pended to the file name.log, where name is a string that identifies the model. The message begins

102 D Error and warning messages

with the header “[metfac2 error ...]” (the ’...’ stands for the error number) and is followed
by one or more lines of text including a brief description of the error. We list next in alphabeti-
cal order the messages associated with external errors (excluding the header) together with their
possible causes.

Action rate is negative or zero.

The rewarded CTMC includes a state such that the rate of one of the (non instantaneous)
actions enabled in the state is ≤ 0. The message is always followed by the rate and index of
the action and the values of the state variables for the state in which the action is enabled.

Action rate is not finite.

The rewarded CTMC includes a state such that the rate of one of the (non instantaneous)
actions enabled in the state is not a finite C double.1 The message is always followed by: 1)
the “value” of the rate (either of: “+infinity”, “-infinity”, “not a number”), 2) the
index of the action, and 3) the values of the state variables for the state in which the action
is enabled.

Initial probability of state is negative or larger than one.

The rewarded CTMC includes a state whose initial probability is < 0 or > 1. The message
is always followed by the values of the state variables for the state and the value of the initial
probability of the state.

Initial probability of state is not finite.

The rewarded CTMC includes a state whose initial probability is not a finite C double.
The message is always followed by the values of the state variables for the state and
the “value” of the initial probability of the state (either of: “+infinity”, “-infinity”,
“not a number”).

Measure IAVCD is not-well defined.

Reward rate of state is neither zero nor one.

The rewarded CTMC includes a non-vanishing, reachable state whose reward rate is neither
0 nor 1. The message is always followed by the values of the state variables for the state and
the value of the reward rate of the state.

Measures ECRTE, CRDTE are not well-defined.

CTMC does not have transient states.

The rewarded CTMC with vanishing states deleted does not include any transient state.
(This may happen, for instance, if the rewarded CTMC with vanishing states deleted is
irreducible.)

1I.e., it is either infinite or a “not-a-number.”

D.1 Error Messages 103

Measures ECRTE, CRDTE are not well-defined.

CTMC has two or more recurrent states.

The rewarded CTMC with vanishing states deleted has two or more recurrent states. (This
may happen, for instance, if there are two or more absorbing states.) If the rewarded CTMC
with vanishing states deleted has any transient state, the message is followed by the list of
recurrent states.

Numerical method: computation failed.

The chosen numerical method failed in computing the selected measure or one of the
chosen numerical methods failed in solving either a singular or a non-singular linear
system of equations involved in computing the measure. The message is always fol-
lowed by a brief explanation that includes, in this order, 1) for the measures ESSRR and
ECRTE, whose computation amounts to solving linear systems of equations, the string
“Singular linear system” if the failure occurred in the course of solving a singular lin-
ear system and the string “Non-singular linear system” if the failure occurred in the
course of solving a non-singular system; 2) the method’s name according to Section 4;
3) for transformation-based methods, a string that tells the user whether the failure oc-
curred when obtaining the truncated transformed model or when solving that model (the
strings are “transformation” and “solution”); and 4) one of the following strings
identifying the reason of the failure: “absolute stagnation”, “allowed CPU time

exhausted”, “integration step too small”, “‘numerical breakdown”, and “LU
decomposition of auxiliary linear system failed”.2 Thus, for instance, assum-
ing the user chose to compute the measure ETRR(t) using the numerical method “Regen-
erative Randomization” (Section 4.1, page 41) and that the allowed CPU time was too small
to obtain the transformed rewarded CTMC given the allowed absolute error, the explana-
tion that would appear after the message would be: “Regenerative Randomization:

transformation: allowed CPU time exhausted”.

Numerical method: condition is not fulfilled.

Some of the conditions required by one of the selected numerical methods is not fulfilled.
The message is always followed by a brief explanation that includes, in this order, 1) for
the measures ESSRR and ECRTE, whose computation amounts to solving linear sys-
tems of equations, the string “Singular linear system” if the conditions have to do
with singular linear systems and the string “Non-singular linear system” if the con-
ditions have to do with non-singular linear systems; 2) the method’s name according to
Section 4; and 3) a string that identifies the condition that does not hold according to Sec-
tion 4. Thus, for instance, assuming the user chose to compute the measure CRCD(t, s)

using the numerical method “Bounding Transformation/Regenerative Transformation” and
that the chosen regenerative state did not belong to the S set, thus violating condition C6
of the method (Section 4.4, page 60), the explanation that would appear after the message
would be: “Bounding Transformation/Regenerative Transformation: C6”.

2The only method that can breakdown or stagnate is “Adaptive Generalized Minimal Residual” (Section 4.2,
page 48); the only methods that may require solving an auxiliary linear system are “Accelerated Gauss-Seidel” and
“Accelerated Adaptive Successive Overrelaxation” (Section 4.2, page 48).

104 D Error and warning messages

Numerical method: wrong information.

The information provided by the user for one of the chosen numerical methods is not
correct. The message is always followed by a brief explanation that includes, in this
order, 1) for the measures ESSRR and ECRTE, whose computation amounts to solving
linear systems of equations, the string “Singular linear system” if the information
has to do with singular linear systems and the string “Non-singular linear system”
if the information has to do with non-singular linear systems; 2) the method’s name
according to Section 4; 3) one of the following strings identifying the reason by which
the provided information is not correct: “in transient class of states no pivot

state has been defined”, “no regenerative state has been defined”, “no
regenerative state has been defined in the set of transient states

with non null reward rate”, ‘two or more regenerative states have been

defined”, and “two or more regenerative states have been defined in the

set of transient states with non null reward rate”, and 4) if two or more
regenerative states have been defined, the list of such states. Thus, for instance, assuming
the user chose to compute the ECRTE measure using the numerical method “Accelerated
Gauss-Seidel” (Section 4.2, page 48) and that he/she forgot to define a suitable pivot

function and the default pivot function, returning 0 for every state, was used, the
explanation that would appear after the message would be: “Non-singular linear

system: Accelerated Gauss-Seidel: in transient class of states no

pivot state has been defined”.

One or more instantaneous actions are enabled in the ‘‘start state’’.

One or more instantaneous actions are enabled in the state specified by means of the
start state construct. The message is always followed by the values of the state vari-
ables for the state and the indices of the instantaneous actions that are enabled in it.

One or more states are unreachable.

The rewarded CTMC with vanishing states deleted includes one or more unreachable
states.3 The message is always followed by the number of unreachable states and the values
of the state variables for each unreachable state.

Response probability is negative, zero, or larger than one.

The rewarded CTMC includes a state such that the probability of the response in one of the
(non instantaneous) action-response pairs enabled in the state is ≤ 0 or > 1. The message
is always followed by: 1) the value of the probability, 2) the index of the response, 3) the
index of the action, and 4) the values of the state variables for the state in which the action-
response pair is enabled.

3A non-vanishing state i of a CTMC X is said to be unreachable if P [X(t) = i] = 0 for all t ≥ 0.

D.1 Error Messages 105

Response probability is not finite.

The rewarded CTMC includes a state such that the probability of the response in one of the
(non instantaneous) action-response pairs enabled in the state is not a finite C double. The
message is always followed by: 1) the “value” of the probability (either of: “+infinity”,
“-infinity”, “not a number”), 2) the index of the response, 3) the index of the action,
and 4) the values of the state variables for the state in which the action-response pair is
enabled.

Reward rate of state is negative.

The rewarded CTMC includes a non-vanishing, reachable state whose reward rate is < 0.
The message is always followed by the values of the state variables for the state and the
value of the reward rate of the state.

Reward rate of state is not finite.

The rewarded CTMC includes a vanishing state or a non-vanishing, reachable state whose
reward rate is not a finite C double. The message is always followed by the values of
the state variables for the state and the “value” of the reward rate of the state (either of:
“+infinity”, “-infinity”, “not a number”).

Self transition rate.

The rewarded CTMC includes a state such that for one of the action-response or instan-
taneous action-response pairs enabled in the state, the values of the state variables do not
change. The message is always followed by: 1) the values of the state variables for the state
in which the action-response or instantaneous action-response pair is enabled, 2) the index
of the response, and 3) the index of the action or the instantaneous action.

Simulation: condition is not fulfilled.

Reward rate of state is larger than user-given upper bound.

The reward rate of one of the states of a realization is larger than the user-given upper
bound (see Section 4.4, page 63). The message is always followed by the values of the state
variables for the state, the state’s reward rate, and the value of the user-given upper bound.

Simulation: condition is not fulfilled.

State is absorbing.

One of the states of a realization or a regenerative cycle is absorbing. The message is
always followed by: 1) the values of the state variables for the state, 2) the values of the
state variables for the state of the realization or regenerative cycle from which the absorbing
state was reached, and 3) the index of the action or the instantaneous action and the index
of the response of the corresponding transition.

106 D Error and warning messages

Simulation: condition is not fulfilled.

The ‘‘start state’’ is absorbing.

The state specified by means of the start state construct is absorbing. The message is
always followed by the values of the state variables for the state.

Simulation failed.

Allowed CPU time exhausted; confidence interval is wider than requested

The chosen simulation method and the allowed CPU time were such that it was possible to
generate the required minimum number of realizations or regenerative cycles with positive
estimator but it was not possible to meet the requested maximum width of the confidence
interval.

Simulation failed.

Allowed CPU time exhausted; minimum number of realizations with positive

estimator not reached.

The chosen simulation method and the allowed CPU time were such that it was not possible
to generate the required minimum number of realizations with positive estimator.

Simulation failed.

Allowed CPU time exhausted; minimum number of regenerative cycles with

positive estimator not reached.

The chosen simulation method and the allowed CPU time were such that it was not possible
to generate the required minimum number of regenerative cycles with positive estimator.

The limit on the number of states has been reached.

The user-given limit on the number of states has been reached (see Section 3, page 33). The
message is always followed by the value of that limit.

There is a cycle of vanishing states connected by instantaneous transitions

The rewarded CTMC includes a set of states mutually reachable via instantaneous actions.
The message is always followed by the values of the states variables for the states that make
up the set.

Transition rate is negative or zero.

The rewarded CTMC includes a state such that for one of the (non instantaneous) action-
response pairs enabled in the state, the product of the action rate and the response probability
is ≤ 0. The message is always followed by: 1) the value of the transition rate, 2) the values
of the state variables for the state in which the action-response pair is enabled (the “from”
state), 3) the index of the response, and 4) the index of the action.

D.2 Warning Messages 107

Transition rate is not finite.

The rewarded CTMC includes a state such that for one of the (non instantaneous) action-
response pairs enabled in the state, the product of the action rate and the response probability
is not a finite C double. The message is always followed by: 1) the “value” of the tran-
sition rate (either of: “+infinity”, “-infinity”, “not a number”), 2) the index of the
response, 3) the index of the action, and 4) the values of the state variables for the state in
which the action-response pair is enabled.

Two or more instantaneous actions are enabled in state.

The rewarded CTMC includes a state different from the one specified by means of the
start state construct in which two or more instantaneous actions are enabled. The mes-
sage is always followed by the values of the state variables for the state and the indices of
the instantaneous actions that are enabled in it.

Wrong input.

Some input provided by the user during the interaction is not correct. The message is always
followed by a brief description of the kind of input that was expected.

Wrong state.

The rewarded CTMC includes a state for which the function with predefined name and pro-
totype check state (Section 3, page 31) returns 0. The message is always followed by: 1)
the values of the state variables for the wrong state, 2) the values of the state variables for the
state from which the wrong one is reached,4 and 3) the index of the action or instantaneous
action and the index of the response of the corresponding transition.

D.2 Warning Messages

Warning messages are intended to inform the user of situations that are potentially dangerous as,
for instance, the fact that a model specification file included an action that did not get enabled in
any state. Warning messages are printed to the standard output stream and to the end of the file
name.log. A warning message begins with the header [metfac2 warning ...] (the ’...’
stands for the warning number) and is followed by one or more lines of text giving the user a
brief description of the warning. We list next in alphabetical order the messages associated with
warnings (excluding the header) together with their possible causes.

Accelerated Adaptive Successive Overrelaxation: All states of

transient class of states have been defined as pivot states.

In the course of solving one of the non-singular linear systems of equations involved in the
computation of the measures ESSRR or ECRTE using the method Accelerated Adaptive
Successive Overrelaxation, it has turned out that in one of the transient classes of states of the

4Unless, of course, when the wrong state is the one specified by means of the start state construct.

108 D Error and warning messages

rewarded CTMC with vanishing states deleted the number of states that have been defined
as pivot states using the function with predefined name and prototype pivot (Section 4.2,
page 49) is equal to the number of states of the class.

Accelerated Gauss-Seidel: All states of transient class of states

have been defined as pivot states.

In the course of solving one of the non-singular linear systems of equations involved in
the computation of the measures ESSRR or ECRTE using the method Accelerated Gauss-
Seidel, it has turned out that in one of the transient classes of states of the rewarded CTMC
with vanishing states deleted the number of states that have been defined as pivot states using
the function with predefined name and prototype pivot (Section 4.2, page 49) is equal to
the number of states of the class.

Action did not get enabled.

The model specification includes a (non instantaneous) action that did not get enabled in
any state of the rewarded CTMC or, if the selected task was to estimate a measure using
simulation, in any state of the realizations or regenerative cycles that have been generated.
The message is always followed by the index of the action.

Block Gauss-Seidel: In recurrent class of states there are as many blocks

as states.

In the course of solving one of the singular linear systems of equations involved in the
computation of the measures ESSRR and ECRTE using the method Block Gauss-Seidel,
it has turned out that in one of the recurrent classes of states of the rewarded CTMC with
vanishing states deleted the number of blocks of states defined by means of the function
with predefined name and prototype block (Section 4.2, page 47) is equal to the number of
states of the class.

Block Gauss-Seidel: In recurrent class of states there is only one block.

In the course of solving one of the singular linear systems of equations involved in the
computation of the measures ESSRR and ECRTE using the method Block Gauss-Seidel,
it has turned out that in one of the recurrent classes of states of the rewarded CTMC with
vanishing states deleted the number of blocks of states defined by means of the function
with predefined name and prototype block (Section 4.2, page 47) is just one.

Block Gauss-Seidel: In transient class of states there are as many blocks

as states.

In the course of solving one of the non-singular linear systems of equations involved in the
computation of the measures ESSRR and ECRTE using the method Block Gauss-Seidel,
it has turned out that in one of the transient classes of states of the rewarded CTMC with
vanishing states deleted the number of blocks of states defined by means of the function
with predefined name and prototype block (Section 4.2, page 47) is equal to the number of
states of the class.

D.2 Warning Messages 109

Block Gauss-Seidel: In transient class of states there is only one block.

In the course of solving one of the non-singular linear systems of equations involved in the
computation of the measures ESSRR and ECRTE using the method Block Gauss-Seidel,
it has turned out that in one of the transient classes of states of the rewarded CTMC with
vanishing states deleted the number of blocks of states defined by means of the function
with predefined name and prototype block (Section 4.2, page 47) is just one.

Enabled action does not have any response enabled in state.

The rewarded CTMC includes a state such that for a (non instantaneous) action that is en-
abled in the state, no response of that action is enabled in the state. The message is always
followed by the index of the action and the values of the state variables for the state.

Instantaneous action did not get enabled.

The model specification includes an instantaneous action that did not get enabled in any state
of the rewarded CTMC or, if the selected task was to estimate a measure using simulation,
in any state of the realizations or regenerative cycles that have been generated. The message
is always followed by the index of the instantaneous action.

Response did not get enabled.

The model specification includes a response that did not get enabled in any state of the
rewarded CTMC or, if the selected task was to estimate a measure using simulation, in any
state of the realizations or regenerative cycles that have been generated. The message is
always followed by the index of the response and the index of the corresponding action.

Reward rate of state is negative.

The rewarded CTMC includes a state whose reward rate is negative. The message is always
followed by the values of the state variables for the state and the state’s reward rate and can
only be issued when the chosen task is to generate a verbose description of the rewarded
CTMC.

Sum of the initial probabilities of the states is not one.

The difference between 1 and the sum of the initial probabilities of the states of the rewarded
CTMC with vanishing states is larger, in absolute value, than 50,000 times the “epsilon”
constant of the underlying hardware.5 The message is always followed by the value of the
sum of the initial probabilities.

Transient states with null reward rate have been deleted.

The rewarded CTMC included one or more non vanishing, transient states whose reward rate
was 0 and those states have been deleted. The message is always followed by the number
of such states and can only be issued when the chosen task is to compute the measure
“Cumulative Reward Distribution Till Exit of a subset of states”.

5The “epsilon” constant is the difference between the smallest exactly representable number greater than 1 and 1.

110 D Error and warning messages

Vanishing states have been deleted.

The rewarded CTMC included one or more vanishing states and those states have been
deleted. The message is always followed by the number of such states.

Sum of probabilities of enabled responses of enabled action

is larger than one in state.

The rewarded CTMC includes a state such that for one of the (non instantaneous) actions
enabled in the state, the sum of the probabilities of the responses of that action that are
enabled in the state is larger than 1 by more than 1,000 times the “epsilon” constant of the
underlying hardware. The message is always followed by: 1) the value of the sum of the
probabilities, 2) the index of the action, 3) the indices of the enabled responses of the action,
and 4) the values of the state variables for the state.

The ‘‘start state’’ is absorbing.

The state specified by means of the start state construct is absorbing. The message is
always followed by the values of the state variables for the state.

Appendix E

Mathematical Justifications

In this appendix, we justify: 1) the formalization of the computation of the measures ESSRR

(Section 4.2, page 46) and ECRTE (Section 4.6, page 69) used in the tool, and 2) the extension to
impulse rewards of the measures ETRR(t) (Section 4.1 on page 40), EARR(t) (Section 4.3 on
page 54), and ECRTE. Throughout the appendix, we will use the same notation as in Section 4.

E.1 Formalization of the Computation of Some Measures

We start by justifying the formulation of the computation of the ESSRR measure in terms of the
solution of some linear systems. The measure can be expressed as:

ESSRR =
∑
i∈Ω

ripi

where pi = limt→∞ pi(t) is the steady-state probability of state i. Let S be the subset of transient
states of X and let C1, C2, . . . , Cm be the recurrent classes of states of X . If S is empty, then states
in different recurrent classes are inaccessible, and it is trivial that, for 1 ≤ k ≤ m, pi = αCk

pki ,
i ∈ Ck, where αCk

=
∑

i∈Ck
αi and the column vectors pk = (pki)i∈Ck

are the 1-normalized
(
∥∥pk

∥∥
1
= 1) solutions of the singular linear systems

(pk)
T
ACk,Ck = 0T , (E.1)

If S is not empty, then, it has been shown in [37] that pi = 0, i ∈ S and that for 1 ≤ k ≤ m,
pi = γkp

k
i , i ∈ Ck, where γk is the probability that X will end up for t → ∞ in Ck and pki ,

i ∈ Ck, 1 ≤ k ≤ m can be computed as just described. If m = 1, X will end up in the single
recurrent class C1 with probability 1 and γ1 = 1. If m ≥ 2, then γk = αCk

+ βk, where βk is the
probability that X will exit S through Ck. Computation of the probabilities βk, 1 ≤ k ≤ m can be
formalized in terms of the solution of a non-singular linear system as follows. For i, j ∈ S, define
τi,j = E[

∫∞
0 1X(t)=j dt |X(0) = i], i, j ∈ S, i.e. τi,j is the expected time of X in j conditioned

on the initial state being i. A standard one-step analysis using the interpretation of X in terms of
the embedded discrete-time Markov chain (see Appendix F) allows us to write

τi,j =
δi,j
λi

+
∑
l∈S
l ̸=i

λi,l

λi
τl,j , i, j ∈ S ,

112 E Mathematical Justifications

where δi,j = 1 for i = j and δi,j = 0 otherwise. We have, then,∑
l∈S
l ̸=i

λi,lτl.j − λiτi,j = −δi,j , i, j ∈ S ,

which, defining the matrix T = (τi,j)i,j∈S , can be written as

AS,ST = −I .

Now, we argue that AS,S is non-singular. One way is to consider the transition matrix P of the
randomized DTMC of X with a randomization rate Λ ≥ maxi∈Ω λi (see Appendix F). Classifica-
tion of the states in the randomized DTMC is as in X . Denoting by PS,S the restriction of P to the
block S×S, we have AS,S = Λ(PS,S−I). But, the spectral radius of PS,S satisfies ρ(PS,S) < 1

(see, for instance, [38, Chapter 8, Lemma 3.20]), and this implies that all eigenvalues of AS,S

have strictly negative real part, implying that AS,S is non-singular. Being AS,S non-singular, we
have

T = −(AS,S)−1 .

Now, define τi = E[
∫∞
0 1X(t)=i dt], i ∈ S, i.e. τi is the expected time of X in state i, and the

column vector τ = (τi)i∈S . Clearly, τ T = (αS)
T
T, so that τ T = −(αS)

T
(AS,S)−1 and τ is the

solution of the non-singular linear system

τ TAS,S = −(αS)
T
. (E.2)

It is easy to justify that τi =
∫∞
0 pi(t) dt. To that end consider that

E
[∫ t+∆t

t
1X(t)=i dt

]
= P [X(t) = i]

× P [X has not made any transition in [t, t+∆t] |X(t) = i](∆t+ T) ,

where

0 ≤ T ≤
∑
j∈Ω

P [X(t) = j]P [X has made some transition in [t, t+∆t] |X(t) = j]∆t .

But,

P [X has made some transition in [t, t+∆t] |X(t) = j] =

∫ ∆t

0
λje

−λjτ dτ = o(1) ,

where o(f(∆t)) denotes a function h(∆t) with limt→0 h(∆t)/f(∆t) = 0. Then, we have

E
[∫ t+∆t

t
1X(t)=i dt

]
= pi(t)e

−λi∆t∆t+ o(∆t) = pi(t)∆t+ o(∆t) ,

which implies τi =
∫∞
0 pi(t) dt. Now, it is easy to see that βk = τ TΛk, 1 ≤ k ≤ m,

where Λk is the column vector Λk = (λi,Ck
)i∈S . This is equivalent to βk =

∑
i∈S τiλi,Ck

=∑
i∈S
∫∞
0 pi(t)λi,Ck

dt, 1 ≤ k ≤ m. But,

P [X has made some transition from S to Ck in [t, t+∆t]]

=
∑
i∈S

P [X(t) = i]P [X has made some transition from S to Ck in [t, t+∆t] |X(t) = i]

+ Ti ,

E.1 Formalization of the Computation of Some Measures 113

where

0 ≤ Ti ≤ P [X has made more than one transition in [t, t+∆t] |X(t) = i]

=
∑
j∈Ω
j ̸=i

λi,j

λi

∫ ∆t

0
λie

−λiτ (1− e−λj(∆t−τ)) dτ = o(∆t) ,

and

P [X has made some transition from S to Ck in [t, t+∆t]]

=
∑
i∈S

pi(t)
λi,Ck

λi
(1− e−λi∆t) + o(∆t)

=
∑
i∈S

pi(t)λi,Ck
∆t+ o(∆t) ,

implying βk =
∑

i∈S
∫∞
0 pi(t)λi,Ck

dt. Summarizing, we have justified that computing the
ESSRR measure involves obtaining the 1-normalized solution of the singular linear systems (E.1)
and, if X has transient states and more than one recurrent class of states, solving the non-singular
linear system (E.2).

The formulation of the computation of the ECRTE measure in terms of the solution
of a non-singular linear system can be justified as follows. For i, j ∈ B, define τi,j =

E[
∫∞
0 1X(t)=j dt | X(0) = i], i.e. τi,j is the expected time of X in j conditioned on the initial

state being i. A standard one-step analysis using the interpretation of X in terms of the embedded
discrete-time Markov chain (see Appendix F) allows us to write

τi,j =
δi,j
λi

+
∑
l∈B
l ̸=i

λi,l

λi
τl,j , i, j ∈ B ,

where δi,j = 1 for i = j and δi,j = 0 otherwise. We have, then,∑
l∈B
l ̸=i

λi,lτl.j − λiτi,j = −δi,j , i, j ∈ B ,

which, defining the matrix T = (τi,j)i,j∈B , can be written as

AB,BT = −I .

That AB,B is non-singular can be argued from the fact that the states in B are transient as it
was argued that matrix AS,S was non-singular when discussing the formulation of the ESSRR

measure above. Being AB,B non-singular, we have

T = −(AB,B)−1 .

Now, define τi = E[
∫∞
0 1X(t)=i dt], i ∈ B, i.e. τi is the expected time of X in state i, and the

column vector τ = (τi)i∈S . Clearly, τ T = (αB)
T
T, so that τ T = −(αB)

T
(AB,B)−1 and τ is

the solution of the non-singular linear system

τ TAB,B = −(αB)
T
. (E.3)

114 E Mathematical Justifications

But, from the definitions of ECRTE and τi, i ∈ B, using the fact that a is absorbing and Fubini’s
theorem:

ECRTE = E

[∫ T

0
rX(t) dt

]
= E

[∑
i∈B

ri

∫ T

0
1X(t)=i dt

]
=
∑
i∈B

riE

[∫ T

0
1X(t)=i dt

]
=

∑
i∈B

riE

[∫ ∞

0
1X(t)=i dt

]
=
∑
i∈B

riτi .

We have thus justified that computing the ECRTE measure involves solving the non-singular
linear system (E.3).

E.2 Extension to Impulse Rewards of Some Measures

We start by justifying the extension to impulse rewards of the ETRR(t) measure. The justification
is based on the facts that, for j ̸= i,

P [X has made a single transition to j in [t, t+∆t] |X(t) = i]

=
λi,j

λi

∫ ∆t

0
λie

−λiτe−λj(∆t−τ) dτ = λi,j∆t+ o(∆t) ,

where o(f(∆t)) denotes a function h(∆t) with lim∆t→0 h(∆t)/f(∆t) = 0, and

P [X has made k transitions in [t, t+∆t] |X(t) = i]

=
∑
j1∈Ω
j1 ̸=i

∑
j2∈Ω
j2 ̸=j1

· · ·
∑
jk∈Ω

jk ̸=jk−1

λi,j1

λi

λj1,j2

λj1

· · ·
λjk−1,jk

λjk−1

×
∫ ∆t

0

∫ ∆t

τ1

· · ·
∫ ∆t

τ1+···+τk−1

λie
−λiτ1λj1e

−λj1
τ2 · · ·λjk−1

e−λjk−1
τke−λjk

(∆t−
∑k

l=1 τl)

dτkdτk−1 · · · dτ1
≤ (max

l∈Ω
λl∆t)k .

The justification is as follows. First, we can write

E[reward accumulated by X in [t, t+∆t]]

=
∑
i∈Ω

P [X(t) = i]P [X has not left i in [t, t+∆t] |X(t) = i]ri∆t

+
∑
i∈Ω

P [X(t) = i]

×
∑
j∈Ω
j ̸=i

P [X has made a single transition to j in [t, t+∆t] |X(t) = i](ri,j + o(1))

+
∞∑
k=2

∑
i∈Ω

P [X(t) = i]P [X has made k transitions in [t, t+∆t] |X(t) = i]

×
(
reward accumulated by X in [t, t+∆t] given X(t) = i and that X has made

k transitions in [t, t+∆t]
)
.

E.2 Extension to Impulse Rewards of Some Measures 115

But, the reward accumulated by X in [t, t+∆t] given X(t) = i and that X has made k transitions
in [t, t +∆t] is ≥ 0 and ≤ rmax∆t + kr′max, with rmax = maxi∈Ω ri and r′max = maxi,j∈Ω

j ̸=i
ri,j ,

and the last term is ≥ 0 and non larger than∑
i∈Ω

P [X(t) = i]
∞∑
k=2

(max
l∈Ω

λl∆t)k(rmax∆t+ kr′max) ,

which is o(∆t). Then, we have

E[reward accumulated by X in [t, t+∆t]]

=
∑
i∈Ω

pi(t)e
−λi∆tri∆t+

∑
i∈Ω

pi(t)
∑
j∈Ω
j ̸=i

(λi,j∆t+ o(∆t))(ri,j + o(1)) + o(∆t)

=
∑
i∈Ω

(
ri +

∑
j∈Ω
j ̸=i

λi,jri,j

)
pi(t)∆t+ o(∆t) ,

showing that

lim
∆t→0+

E[reward accumulated by X in [t, t+∆t]]

∆t
=
∑
i∈Ω

(
ri +

∑
j∈Ω
j ̸=i

λi,jri,j

)
pi(t) , (E.4)

which is ETRR(t) for the rewarded CTMC with added contributions to the reward rates of the
states.

The extension to impulse rewards of the EARR(t) measure can be justified as follows. We
have

E
[reward accumulated by X in [0, t]

t

]
=

1

t
E[reward accumulated by X in [0, t]]

and, since (E.4), it follows that

1

t
E[reward accumulated by X in [0, t]]

=
1

t

∫ t

0

∑
i∈Ω

(
ri +

∑
j∈Ω
j ̸=i

λi,jri,j

)
pi(τ) dτ =

1

t

∫ t

0
E[r′′X(τ)] dτ = E

[∫ t
0 r

′′
X(τ) dτ

t

]
,

where r′′i = ri +
∑

j∈Ω
j ̸=i

λi,jri,j , which is EARR(t) for the rewarded CTMC with added contribu-

tions to the reward rates of the states.
Finally, we justify the extension to impulse rewards of the ECRTE measure. Setting conven-

tionally ra = 0, we have

ECRTE = E [reward accumulated by X in [0,∞]]

=

∫ ∞

0
lim

∆t→0+

E [reward accumulated by X in [t, t+∆t]]

∆t
dt .

But, noting that Ω = B ∪ {a}, (E.4) with ra = 0 yields

lim
∆t→0+

E[reward accumulated by X in [t, t+∆t]]

∆t
=
∑
i∈B

(
ri +

∑
j∈B
j ̸=i

ri,jλi,j

)
pi(t) ,

116 E Mathematical Justifications

and, thus, using, by Fubini’s theorem, τi = E[
∫∞
0 1X(t)=i dt] =

∫∞
0 pi(t) dt,

ECRTE =

∫ ∞

0

∑
i∈B

(
ri +

∑
j∈B
j ̸=i

ri,jλi,j

)
pi(t) dt =

∑
i∈B

(
ri +

∑
j∈B
j ̸=i

ri,jλi,j

)∫ ∞

0
pi(t) dt

=
∑
i∈B

(
ri +

∑
j∈B
j ̸=i

ri,jλi,j

)
τi ,

which, as seen, is ECRTE for the rewarded CTMC with added contributions to the reward rates
of the states.

Appendix F

A Tutorial on Rewarded Finite CTMCs

This appendix provides a brief tutorial on rewarded finite CTMCs.

F.1 Finite CTMCs

An (homogeneous) continuous-time Markov chain (CTMC) with state space Ω is a stochastic
process X = {X(t); t ≥ 0} with continuous parameter t in which each random variable X(t),
t ≥ 0 takes values in Ω, satisfying the Markov property and being time invariant. Letting s ≥ 0,
t > 0, the Markov property can be stated as:

P [X(t+ s) = j |X(s) = i,X(u) = x(u), 0 ≤ u ≤ s] = P [X(t+ s) = j |X(s) = i] ,

where x(u), 0 ≤ u ≤ s is the realization of X (set of states visited by X in the time interval
[0, s]), and paraphrased by saying that “the conditional distribution of the future state, given the
present state and all past states, depends only on the present state and is independent of the past.”
Time-invariance makes reference to the fact that

P [X(t+ s) = j |X(s) = i] = P [X(t) = j |X(0) = i] .

We will assume Ω finite.
Let Qi,j(t) = P [X(t) = j | X(0) = i]. The matrix Q(t) = (Qi,j(t))i,j∈Ω is called the

transition probability matrix of X . Obviously, by definition, we have Q(0) = I, where I is the
identity matrix. A transition matrix is called standard if Q(0+) = I, where Q(0+) denotes the
limit from the right at t = 0. We will assume that the CTMC has a standard transition matrix
unless explicitly stated otherwise. Intuitively, this is equivalent to assume that the CTMC does not
have vanishing (also called instantaneous) states. In that case (see [39]), the derivative of Q(t)

at t = 0 from the right, Q′(0+), exists and is called the infinitesimal generator (or transition rate
matrix) of the CTMC. Let A = (ai,j)i,j∈Ω be the infinitesimal generator of X . It has elements
ai,j = λi,j , i, j ∈ Ω, j ̸= i and ai,i = −λi = −

∑
j∈Ω,j ̸=i λi,j , i ∈ Ω. The element λi,j , i, j ∈ Ω,

j ≠ i is called the transition rate of X from state i to state j. The element λi, i ∈ Ω is called the
output rate of X from state i. The meaning of λi,j , i, j ∈ Ω, j ̸= i is clear from its definition:

λi,j = lim
h→0+

Qi,j(h)

h
= lim

h→0+

P [X(h) = j |X(0) = i]

h
= lim

h→0+

P [X(t+ h) = j |X(t) = i]

h
,

118 F A Tutorial on Rewarded Finite CTMCs

and λi,j is the “rate” at which X makes a transition from state i to state j. The meaning of λi,
i ∈ Ω is also clear from its definition:

λi = lim
h→0+

1−Qi,i(h)

h
= lim

h→0+

P [X(h) ̸= i |X(0) = i]

h
= lim

h→0+

P [X(t+ h) ̸= i |X(t) = i]

h
,

and λi is the “rate” at which X leaves state i.

A finite CTMC X can be interpreted in terms of its embedded (homogeneous) discrete-time
Markov chain (DTMC). The embedded DTMC, Π = {Πn;n = 0, 1, 2, . . .}, of X is a DTMC
having same initial probability distribution as X and transition probabilities pi,j = P [Πn+1 =

j |Πn = i], i, j ∈ Ω defined as

pi,j =

λi,j/λi for j ̸= i, λi > 0

0 for j = i, λi > 0

0 for j ̸= i, λi = 0

1 for j = i, λi = 0

.

The interpretation of X in terms of Π is as follows: Π gives the sequence of states visited by X ,
and each visit to state i has a duration, called the sojourn time, which is exponentially distributed
with parameter λi (for λi = 0, the sojourn time would be infinite with probability 1).

Another interpretation of a finite CTMC X in terms of a DTMC which is often useful and
which is the basis of many of the numerical methods supported by METFAC-2.1 is based on
the randomization (also called uniformization) construct. In that construct (see, for instance,
[39]), the CTMC X is interpreted in terms of a Poisson process N = {N(t); t ≥ 0} with rate
Λ ≥ maxi∈Ω λi and an independent randomized DTMC X̂ = {X̂n;n = 0, 1, 2, . . .} with ran-
domization rate Λ. The Poisson process is a birth CTMC with state space {0, 1, 2, . . .} with birth
rate Λ at every state. Its transient state probabilities are given by

P [N(t) = n] =
(Λt)n

n!
e−Λt .

The randomized DTMC X̂ is the DTMC with same state space and initial probability distribution
as X and transition matrix P = (Pi,j)i,j∈Ω = I +A/Λ, i.e., Pi,i = 1 − λi/Λ, i ∈ Ω and Pi,j =

λi,j/Λ, i, j ∈ Ω, j ̸= i. The interpretation of X in terms of N and X̂ yields the important result
that X = {X(t); t ≥ 0} and {X̂N(t); t ≥ 0} are probabilistically identical [39, Theorem 4.19], a
fact which is used in many of the numerical methods supported by METFAC-2.1.

The interpretation of a CTMC without vanishing states in terms of its embedded DTMC can
be extended as follows to a CTMC with vanishing states of the kind METFAC-2.1 allows to
specify. In those CTMCs, there is at least one non vanishing state (the one specified by means of
the start state construct), for each vanishing state i there is one and only one state j such that
λi,j = ∞, and there are not cycles of vanishing states, i.e, sequences of states {i(k); 1 ≤ k ≤
n+1}, n ≥ 1, with i(1) = i(n) and i(k) ̸= i(k+1), 1 ≤ k ≤ n−1, such that λi(k),i(k+1) = ∞ for
k = 1, . . . , n. In the extended interpretation, the transition probabilities of the embedded DTMC

F.1 Finite CTMCs 119

Π of X are defined as

pi,j =

λi,j/λi for j ̸= i, λi > 0, λi < ∞
1 for j ̸= i, λi = λi,j = ∞
0 for j ̸= i, λi = ∞, λi,j < ∞
0 for j = i, λi > 0

0 for j ̸= i, λi = 0

1 for j = i, λi = 0

.

Then, the interpretation of X in terms of Π is as follows: Π gives the sequence of states visited
by X , each visit to a non vanishing state i has a sojourn time that is exponentially distributed with
parameter λi (for λi = 0, the sojourn time would be infinite with probability 1), and each visit to
a vanishing state i has a sojourn time τi with distribution function P [τi ≤ t] = 1, t ≥ 0.

We continue our review of finite CTMCs that have a standard transition matrix with the classi-
fication of the states of the CTMC. That subject is covered in [37]. It turns out that the classification
of the states of a finite CTMC X without vanishing states can be performed algorithmically by
analyzing the transition diagram of X . The transition diagram of X is a digraph having as set
of nodes the states of the CTMC and an arc from state i to state j labeled with the value λi,j if
and only if λi,j > 0. A state j (not necessarily different from i) is said to be accessible from
a state i (denoted by i → j) if either j = i or there is path in the transition diagram from i to
j. Two states i, j ∈ Ω are said to communicate (denoted by i ↔ j) if both i → j and j → i.
Thus i ↔ i, i ∈ Ω and for i, j ∈ Ω, i ̸= j, i ↔ j if and only if there are paths in the transition
diagram both from i to j and from j to i. State communication is an equivalence relation. The
resulting classes are called the classes of states of X , i.e., a class of states of X is a maximal
subset of communicating states. In terms of the transition diagram of X , the classes of X are the
strongly connected components of its transition diagram (see, for instance, [40]). Determination
of which classes of states of a finite CTMC X are transient and which are recurrent can be done
by analyzing the digraph of state classes of X . The digraph of state classes of a finite CTMC
X is the acyclic digraph having a node for each class of states of X and an arc from state class
C to state class C ′ if and only if the transition diagram of X has an arc from some state in C to
some state in C ′. To illustrate the concepts defined so far, Figure F.1 gives the transition diagram
of a small finite CTMC and the corresponding digraph of state classes. Then, the recurrent classes
of states are the classes which in the digraph of state classes do not have outgoing arcs, implying
that once the CTMC enters such a class it will not leave it, and the transient classes are the classes
which in the digraph of state classes have some outgoing arc, implying that the CTMC will leave
the class with probability 1 and that, once the CTMC leaves the class it will never reenter it. For
the example given in Figure F.1, state classes C1, C2 and C3 would be transient and state classes
C4 and C5 would be recurrent. A finite CTMC having a single (recurrent) class of states is said to
be irreducible. A state i ∈ Ω is said to be absorbing if and only if λi = 0. This is equivalent to the
state i making up a recurrent class of states. For the example given in Figure F.1, state 9 would be
absorbing.

We end this brief review of finite CTMCs by discussing the concept of reachability in finite
CTMCs without vanishing states. Let pi(t) = P [X(t) = i], i ∈ Ω be the transient probability
of state i. Then, a state i is said to be reachable if and only if pi(t) > 0 for some t > 0, which

120 F A Tutorial on Rewarded Finite CTMCs

1

2

7

5

6

3

4

8

9

C1 C2

C3

C4

C5

C1 C2

C3

C4 C5

λ µ λ µ

λ

λ

λ

λ µ

λ
λ

λ µ

Figure F.1: Transition diagram of a small finite CTMC (left) and the corresponding digraph of
state classes (right).

is equivalent to pi(t) > 0 for all t > 0. It turns out that reachability is a class property, i.e.,
all states of a given class of states C are either reachable or unreachable. Thus, we can properly
talk about reachable and unreachable state classes. Unreachable states are never visited and can
be suppressed from the state space of the CTMC without modifying the feasible realizations of
the CTMC. Determination of which classes of states are reachable and which are unreachable can
be made by analyzing the digraph of state classes together with the initial probability distribution
vector of the CTMC, α = (αi)i∈Ω, αi = P [X(0) = i]. For every class C of states of the CTMC,
define αC =

∑
i∈C αi, i.e., αC is the probability that initially the CTMC is in some state of class

C. Then, a class C is reachable if either αC > 0, or there exists some other class of states C ′ with
αC′ > 0 such that there is some path in the digraph of state classes from C ′ to C. For the example
in Figure F.1, assuming αC1 > 0, αC2 = 0, αC3 > 0, αC4 > 0, and αC5 = 0, the reachable state
classes would be the classes C1, C3, C4, and C5, and the state class C2 would be unreachable.
METFAC-2.1 aborts the execution of a model if the corresponding CTMC with vanishing states
deleted includes one or more unreachable states.

F.2 Rewarded Finite CTMCs

A rewarded finite CTMC is a finite CTMC with a reward structure imposed over it. In general,
the reward structure may include reward rates ri associated with states and impulse rewards ri,j
associated with transitions. The quantity ri has the meaning of “rate at which reward is earned
while X is in state i.” The quantity ri,j has the meaning of “reward which is earned each time
X makes a transition from state i to state j.” METFAC-2.1 allows the specification and solution
of rewarded finite CTMCs with a reward structure including only reward rates. However, for the
purpose of computing many reward measures, rewarded finite CTMCs with both reward rates and
impulse rewards can be mapped into rewarded finite CTMCs with only reward rates (see Section 4

F.2 Rewarded Finite CTMCs 121

and Appendix E).

122 F A Tutorial on Rewarded Finite CTMCs

Appendix G

Some Sizable Examples

In this section we will illustrate the capabilities of METFAC-2.1 using three sizable modeling
examples of increasing complexity.

G.1 A Reliability Model of a 5-level RAID Storage Subsystem

RAID (Redundant Array of Inexpensive Disks) architectures may provide reliable and high ca-
pacity storage at a moderate cost. Level 5 is one of the most popular RAID architectures. In a
level-5 RAID architecture with M disks, data is organized into groups of M − 1 bits and a parity
bit is computed for each group. Data blocks are organized into M subblocks of which one sub-
block contains the parity bits of the corresponding M − 1 bit groups residing in the other M − 1

subblocks. Each subblock is stored in a different disk. The disk in which the parity subblock is
stored is rotated among the disks comprising the RAID. This balances the load of the disks. The
architecture tolerates the failure of one disk without losing data. When a disk fails, the failed disk
is first repaired. After that, a reconstruction process writes into the repaired disk the data which
that disk has to hold to be consistent with the data of the remaining disks. In this section we will
analyze the reliability of a 5-level RAID storage subsystem comprising eight disks, two redundant
disk controllers and two redundant power supplies (see Figure G.1). The power supplies work
in cold standby redundancy. The RAID subsystem is up if, ignoring coverage faults, at least one
controller is unfailed, at least one power supply is unfailed and at least seven disks have updated
data. Disks fail with rate λD if no disk is under reconstruction and with rate λDR if one disk is
under reconstruction; controllers fail with rate λC2 if the subsystem has two unfailed controllers
and with rate λC1 if the subsystem has one unfailed controller; the active power supply fails with
rate λP; the coverage to controller failures is CC; and the coverage to power supply failures is CP.
Disks are reconstructed with rate µDR. It is assumed the availability of an unlimited number of
repairmen to repair failed components. The repair rate is µR for all components. The measure
of interest is the unreliability at time t (probability that the system has failed in the time interval
[0, t]), ur(t). It is assumed that initially the system is in the state without failed components and
all disks with consistent data.

We will call raid the unreliability model of the 5-level RAID subsystem. The model will be
specified using an enumeration style in which the states and transition rates of the rewarded CTMC
model are specified directly. The specification will make use of 13 state variables identifying the

124 G Some Sizable Examples

PS

CONTCONT

PS

Figure G.1: Architecture of the RAID subsystem.

state of the RAID subsystem: FOP (fully operational, i.e., without failed components and with
all disks with consistent data), C (with one controller failed), D (with one disk failed), P (with
one power supply failed), R (with one disk under reconstruction), CD (with one controller and one
disk failed), CP (with one controller and one power supply failed), CR (with one controller failed
and one disk under reconstruction), DP (with one disk and one power supply failed), PR (with
one power supply failed and one disk under reconstruction), CDP (with one controller, one disk,
and one power supply failed), CPR (with one controller and one power supply failed and one disk
under reconstruction), and DOWN (down). We give next a model specification file raid.spec that is
appropriate for computing the unreliability ur(t) using the measure CRDTE(s) with s = t. Since
the initial probability distribution is concentrated in the “start state” of the model specification, it is
not necessary to use the construct initial probability, and since no model-specific functions
will be used, the model specification will not include a file raid.c.
raid.spec

parameters

double

LD, /* disk failure rate when the RAID has no disk under reconstruction */

LDR, /* disk failure rate when the RAID has one disk under reconstruction */

LC2, /* controller failure rate when both controllers are failed */

LC1, /* controller failure rate when only one controller is failed */

LP, /* power supply failure rate */

CVC, /* coverage to controller failures */

CVP, /* coverage to power supply failures */

MDR, /* disk reconstruction rate */

MR /* repair rate */

state_variables

FOP, C, D, P, R, CD, CP, CR, DP, PR, CDP, CPR, DOWN

start_state

G.1 A Reliability Model of a 5-level RAID Storage Subsystem 125

FOP=yes, C=no, D=no, P=no, R=no, CD=no, CP=no, CR=no, DP=no,

PR=no, CDP=no, CPR=no, DOWN=no

reward_rate

(double)(DOWN==no)

production_rules

if FOP action FOP_C with_rate 2*LC2*CVC

next_state FOP=no, C=yes

if FOP action FOP_D with_rate 8*LD

next_state FOP=no, D=yes

if FOP action FOP_P with_rate LP*CVP

next_state FOP=no, P=yes

if FOP action FOP_DOWN with_rate 2*LC2*(1-CVC)+LP*(1-CVP)

next_state FOP=no, DOWN=yes

if C action C_FOP with_rate MR

next_state C=no, FOP=yes

if C action C_CD with_rate 8*LD

next_state C=no, CD=yes

if C action C_CP with_rate LP*CVP

next_state C=no, CP=yes

if C action C_DOWN with_rate LC1+LP*(1-CVP)

next_state C=no, DOWN=yes

if D action D_R with_rate MR

next_state D=no, R=yes

if D action D_CD with_rate 2*LC2*CVC

next_state D=no, CD=yes

if D action D_DP with_rate LP*CVP

next_state D=no, DP=yes

if D action D_DOWN with_rate 7*LD+2*LC2*(1-CVC)+LP*(1-CVP)

next_state D=no, DOWN=yes

if P action P_FOP with_rate MR

next_state P=no, FOP=yes

if P action P_CP with_rate 2*LC2*CVC

next_state P=no, CP=yes

if P action P_DP with_rate 8*LD

next_state P=no, DP=yes

126 G Some Sizable Examples

if P action P_DOWN with_rate 2*LC2*(1-CVC)+LP

next_state P=no, DOWN=yes

if R action R_FOP with_rate MDR

next_state R=no, FOP=yes

if R action R_D with_rate LDR

next_state R=no, D=yes

if R action R_CR with_rate 2*LC2*CVC

next_state R=no, CR=yes

if R action R_PR with_rate LP*CVP

next_state R=no, PR=yes

if R action R_DOWN with_rate 7*LDR+2*LC2*(1-CVC)+LP*(1-CVP)

next_state R=no, DOWN=yes

if CD action CD_D with_rate MR

next_state CD=no, D=yes

if CD action CD_CR with_rate MR

next_state CD=no, CR=yes

if CD action CD_CDP with_rate LP*CVP

next_state CD=no, CDP=yes

if CD action CD_DOWN with_rate 7*LD+LC1+LP*(1-CVP)

next_state CD=no, DOWN=yes

if CP action CP_C with_rate MR

next_state CP=no, C=yes

if CP action CP_P with_rate MR

next_state CP=no, P=yes

if CP action CP_CDP with_rate 8*LD

next_state CP=no, CDP=yes

if CP action CP_DOWN with_rate LC1+LP

next_state CP=no, DOWN=yes

if CR action CR_C with_rate MDR

next_state CR=no, C=yes

if CR action CR_R with_rate MR

next_state CR=no, R=yes

if CR action CR_CD with_rate LDR

next_state CR=no, CD=yes

if CR action CR_CPR with_rate LP*CVP

next_state CR=no, CPR=yes

G.1 A Reliability Model of a 5-level RAID Storage Subsystem 127

if CR action CR_DOWN with_rate 7*LDR+LC1+LP*(1-CVP)

next_state CR=no, DOWN=yes

if DP action DP_D with_rate MR

next_state DP=no, D=yes

if DP action DP_PR with_rate MR

next_state DP=no, PR=yes

if DP action DP_CDP with_rate 2*LC2*CVC

next_state DP=no, CDP=yes

if DP action DP_DOWN with_rate 7*LD+2*LC2*(1-CVC)+LP

next_state DP=no, DOWN=yes

if PR action PR_P with_rate MDR

next_state PR=no, P=yes

if PR action PR_R with_rate MR

next_state PR=no, R=yes

if PR action PR_DP with_rate LDR

next_state PR=no, DP=yes

if PR action PR_CPR with_rate 2*LC2*CVC

next_state PR=no, CPR=yes

if PR action PR_DOWN with_rate 7*LDR+2*LC2*(1-CVC)+LP

next_state PR=no, DOWN=yes

if CDP action CDP_CD with_rate MR

next_state CDP=no, CD=yes

if CDP action CDP_DP with_rate MR

next_state CDP=no, DP=yes

if CDP action CDP_CPR with_rate MR

next_state CDP=no, CPR=yes

if CDP action CDP_DOWN with_rate 7*LD+LC1+LP

next_state CDP=no, DOWN=yes

if CPR action CPR_CP with_rate MDR

next_state CPR=no, CP=yes

if CPR action CPR_CR with_rate MR

next_state CPR=no, CR=yes

if CPR action CPR_PR with_rate MR

next_state CPR=no, PR=yes

if CPR action CPR_CDP with_rate LDR

next_state CPR=no, CDP=yes

128 G Some Sizable Examples

if CPR action CPR_DOWN with_rate 7*LDR+LC1+LP

next_state CPR=no, DOWN=yes

Assume that it is desired to analyze how the unreliability ur(t) at t = 1 year depends on the
coverages to controller and power supply failures for λD = 4× 10−6 h−1, λDR = 6× 10−6 h−1,
λC2 = 2 × 10−5 h−1, λC1 = 3 × 10−5 h−1, λP = 2 × 10−5 h−1, µDR = 0.125 h−1, and
µR = 0.05 h−1. We may choose to give to CC the values 0.9, 0.95 and 0.99 and to give to
CP the values 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, and 0.99. This will require
running the executable file raid.exe 30 times and collecting the obtained results. Doing that
manually is cumbersome and error prone. A better idea is to generate automatically the input
required by the tool for each run and launch the runs using two C-shell (csh) scripts. Assum-
ing that the measure CRDTE(s) (equal, we recall, to ur(t) for t = s) is computed using the
method “Standard Randomization” with an error requirement ε = 10−8 and that the full path to
the C-shell is /bin/csh, two appropriate C-shell scripts would be the scripts “input.csh” and
“schedule.csh” given next. The script “input.csh” builds in the file “raid.inp” the input
required by raid.exe and has as first parameter the value of CC and as a second parameter the
value of CP; the script “schedule.csh” schedules the executions of raid.exe, collecting the
results in the file raid.res.
input.csh

#!/bin/csh

set CVC = ($1)

set CVP = ($2)

set LD = (4e-6)

set LDR = (6e-6)

set LC2 = (2e-5)

set LC1 = (3e-5)

set LP = (2e-5)

set MDR = (0.125)

set MR = (0.05)

echo $LD >! raid.inp

foreach val ($LDR $LC2 $LC1 $LP $CVC $CVP $MDR $MR)

echo $val >> raid.inp

end

echo 1 >> raid.inp

echo 7 >> raid.inp

echo 1 >> raid.inp

echo 1e-8 >> raid.inp

echo 100000 >> raid.inp

echo 1 >> raid.inp

echo 8760 >> raid.inp

echo y >> raid.inp

#

schedule.csh

#!/bin/csh

G.2 A Reliability Model of a Storage System 129

0.001

0.01

0.1

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

CVP

CVC=0.9
CVC=0.95
CVC=0.99

Figure G.2: Results obtained for the one-year unreliability of the 5-level RAID storage subsystem.

echo "" >! raid.res

foreach CVC (0.9 0.95 0.99)

foreach CVP (0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99)

input $CVC $CVP

raid.exe < raid.inp > /dev/null

echo ">" >> raid.res

echo ">" >> raid.res

cat raid.res raid.log >! tmp.out

\mv -f tmp.out raid.res

end

end

\rm -f raid.inp

#

Figure G.2 plots the obtained results. We can note that the relative improvement on ur(t) due
to increasing CP (CVP in the figure) gets more noticeable as CC (CVC in the figure) gets closer to
1.

G.2 A Reliability Model of a Storage System

The second example is a storage system comprising N 5-level RAID storage subsystems such
as those described in Section G.1. The storage system is up if every RAID subsystem is up.
The measure of interest is the unreliability of the system at time t, ur(t). An appropriate model
specification can be obtained by defining state variables counting the number of RAID subsystems
in each operational state and one state variable indicating that the system has failed. Such a
model specification takes advantage of the fact that all RAID subsystems have identical behavior
to reduce the size of the generated CTMC. However, the resulting CTMCs can be large for large
values of N . The size of the CTMCs can be kept very small, however, using bounding methods.

130 G Some Sizable Examples

A CTMC, Xb, yielding bounds for ur(t) would have a state space S ∪ {f, a}, where f and a

are absorbing states and S includes operational states with no more than M failed components
or disks under reconstruction. Transitions in the exact model from S to the “system down” state
would be directed to state f ; transitions in the exact model from states in S to operational states
with more than M failed components or disks under reconstruction would be directed to state a.
Then, a lower bound for ur(t) would be urlb(t) = P [Xb(t) = f] and an upper bound for ur(t)
would be urub(t) = P [Xb(t) = f]+P [Xb(t) = a]. Small values of M are enough to obtain tight
bounds for ur(t). A suitable model specification for computing both bounds using the ETRR(t)

measure follows. The specification is easily derived from the model specification of the RAID
subsystem given in Section G.1 and includes a model specification file raidsys.spec and a C
file raidsys.c defining a function counting the number of failed components and disks under
reconstruction in an operational state. State variables F and A identify the absorbing states f and
a, respectively. An int parameter UB is used to indicate whether the lower bound (UB = 0) or the
upper bound (UB ̸= 0) is to be computed. Note that when Xb has to enter either the absorbing state
f or the absorbing state a, the counting variables are reset. If they were not, multiple absorbing
states f and a would be generated and the resulting CTMC could be substantially larger.
raidsys.spec

parameters

int

N, /* number of RAID susbsystems */

M, /* operational states with up to M failed components or

disks under reconstruction are generated */

UB, /* when not 0 compute upper bound; when 0 compute

lower bound */

double

LD, /* disk failure rate when the RAID has no disk under

reconstruction */

LDR, /* disk failure rate when the RAID has one disk under

reconstruction */

LC2, /* controller failure rate when both controllers are failed */

LC1, /* controller failure rate when only one controller is failed */

LP, /* power supply failure rate */

CVC, /* coverage to controller failures */

CVP, /* coverage to power supply failures */

MDR, /* disk reconstruction rate */

MR /* repair rate */

state_variables

NFOP, NC, ND, NP, NR, NCD, NCP, NCR, NDP, NPR, NCDP, NCPR, F, A

external

int NFCDR(int, int, int, int, int, int, int, int, int, int, int)

start_state

G.2 A Reliability Model of a Storage System 131

NFOP=N, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, F=no, A=no

reward_rate

(double)(F==1 || (A==1 && UB))

production_rules

if NFOP>0 action FOP_C with_rate NFOP*2*LC2*CVC

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)<M response GO

next_state NFOP--, NC++

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)==M response A

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, A=yes

end

if NFOP>0 action FOP_ND with_rate NFOP*8*LD

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)<M response GO

next_state NFOP--, ND++

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)==M response A

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, A=yes

end

if NFOP>0 action FOP_P with_rate NFOP*LP*CVP

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)<M response GO

next_state NFOP--, NP++

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)==M response A

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, A=yes

end

if NFOP>0 action FOP_DOWN with_rate NFOP*(2*LC2*(1-CVC)+LP*(1-CVP))

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, F=yes

if NC>0 action C_FOP with_rate NC*MR

next_state NC--, NFOP++

if NC>0 action C_CD with_rate NC*8*LD

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)<M response GO

next_state NC--, NCD++

132 G Some Sizable Examples

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)==M response A

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, A=yes

end

if NC>0 action C_CP with_rate NC*LP*CVP

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)<M response GO

next_state NC--, NCP++

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)==M response A

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, A=yes

end

if NC>0 action C_DOWN with_rate NC*(LC1+LP*(1-CVP))

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, F=yes

if ND>0 action D_R with_rate ND*MR

next_state ND--, NR++

if ND>0 action D_CD with_rate ND*2*LC2*CVC

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)<M response GO

next_state ND--, NCD++

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)==M response A

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, A=yes

end

if ND>0 action D_DP with_rate ND*LP*CVP

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)<M response GO

next_state ND--, NDP++

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)==M response A

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, A=yes

end

if ND>0 action D_DOWN with_rate ND*(7*LD+2*LC2*(1-CVC)+LP*(1-CVP))

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, F=yes

if NP>0 action P_FOP with_rate NP*MR

next_state NP--, NFOP++

G.2 A Reliability Model of a Storage System 133

if NP>0 action P_CP with_rate NP*2*LC2*CVC

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)<M response GO

next_state NP--, NCP++

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)==M response A

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, A=yes

end

if NP>0 action P_DP with_rate NP*8*LD

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)<M response GO

next_state NP--, NDP++

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)==M response A

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, A=yes

end

if NP>0 action P_DOWN with_rate NP*(2*LC2*(1-CVC)+LP)

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, F=yes

if NR>0 action R_FOP with_rate NR*MDR

next_state NR--, NFOP++

if NR>0 action R_D with_rate NR*LDR

next_state NR--, ND++

if NR>0 action R_CR with_rate NR*2*LC2*CVC

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)<M response GO

next_state NR--, NCR++

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)==M response A

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, A=yes

end

if NR>0 action R_PR with_rate NR*LP*CVP

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)<M response GO

next_state NR--, NPR++

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)==M response A

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, A=yes

end

134 G Some Sizable Examples

if NR>0 action R_DOWN with_rate NR*(7*LDR+2*LC2*(1-CVC)+LP*(1-CVP))

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, F=yes

if NCD>0 action CD_D with_rate NCD*MR

next_state NCD--, ND++

if NCD>0 action CD_CR with_rate NCD*MR

next_state NCD--, NCR++

if NCD>0 action CD_CDP with_rate NCD*LP*CVP

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)<M response GO

next_state NCD--, NCDP++

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)==M response A

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, A=yes

end

if NCD>0 action CD_DOWN with_rate NCD*(7*LD+LC1+LP*(1-CVP))

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, F=yes

if NCP>0 action CP_C with_rate NCP*MR

next_state NCP--, NC++

if NCP>0 action CP_P with_rate NCP*MR

next_state NCP--, NP++

if NCP>0 action CP_CDP with_rate NCP*8*LD

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)<M response GO

next_state NCP--, NCDP++

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)==M response A

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, A=yes

end

if NCP>0 action CP_DOWN with_rate NCP*(LC1+LP)

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, F=yes

if NCR>0 action CR_C with_rate NCR*MDR

next_state NCR--, NC++

if NCR>0 action CR_R with_rate NCR*MR

next_state NCR--, NR++

if NCR>0 action CR_CD with_rate NCR*LDR

next_state NCR--, NCD++

G.2 A Reliability Model of a Storage System 135

if NCR>0 action CR_CPR with_rate NCR*LP*CVP

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)<M response GO

next_state NCR--, NCPR++

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)==M response A

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, A=yes

end

if NCR>0 action CR_DOWN with_rate NCR*(7*LDR+LC1+LP*(1-CVP))

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, F=yes

if NDP>0 action DP_D with_rate NDP*MR

next_state NDP--, ND++

if NDP>0 action DP_PR with_rate NDP*MR

next_state NDP--, NPR++

if NDP>0 action DP_CDP with_rate NDP*2*LC2*CVC

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)<M response GO

next_state NDP--, NCDP++

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)==M response A

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, A=yes

end

if NDP>0 action DP_DOWN with_rate NDP*(7*LD+2*LC2*(1-CVC)+LP)

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, F=yes

if NPR>0 action PR_P with_rate NPR*MDR

next_state NPR--, NP++

if NPR>0 action PR_R with_rate NPR*MR

next_state NPR--, NR++

if NPR>0 action PR_DP with_rate NPR*LDR

next_state NPR--, NDP++

if NPR>0 action PR_CPR with_rate NPR*2*LC2*CVC

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)<M response GO

next_state NPR--, NCPR++

if NFCDR(NC,ND,NP,NR,NCD,NCP,NCR,NDP,NPR,NCDP,NCPR)==M response A

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, A=yes

136 G Some Sizable Examples

end

if NPR>0 action PR_DOWN with_rate NPR*(7*LDR+2*LC2*(1-CVC)+LP)

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, F=yes

if NCDP>0 action CDP_CD with_rate NCDP*MR

next_state NCDP--, NCD++

if NCDP>0 action CDP_DP with_rate NCDP*MR

next_state NCDP--, NDP++

if NCDP>0 action CDP_CPR with_rate NCDP*MR

next_state NCDP--, NCPR++

if NCDP>0 action CDP_DOWN with_rate NCDP*(7*LD+LC1+LP)

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, F=yes

if NCPR>0 action CPR_CP with_rate NCPR*MDR

next_state NCPR--, NCP++

if NCPR>0 action CPR_CR with_rate NCPR*MR

next_state NCPR--, NCR++

if NCPR>0 action CPR_PR with_rate NCPR*MR

next_state NCPR--, NPR++

if NCPR>0 action CPR_CDP with_rate NCPR*LDR

next_state NCPR--, NCDP++

if NCPR>0 action CPR_DOWN with_rate NCPR*(7*LDR+LC1+LP)

next_state NFOP=0, NC=0, ND=0, NP=0, NR=0, NCD=0, NCP=0, NCR=0, NDP=0,

NPR=0, NCDP=0, NCPR=0, F=yes

raidsys.c

#include "raidsys.h"

int NFCDR(int NC, int ND, int NP, int NR, int NCD, int NCP,

int NCR, int NDP, int NPR, int NCDP, int NCPR)

{

return 3*(NCDP+NCPR)+2*(NCD+NCP+NCR+NDP+NPR)+NC+ND+NP+NR;

}

The size of Xb is independent on N for N ≥ M . As previously commented, small values
of M are enough to obtain tight bounds. To illustrate, Table G.1 gives the number of states and
transitions of Xb and the bounds for the one-year unreliability for increasing values of M and
N = 10, λD = 4× 10−6 h−1, λDR = 6× 10−6 h−1, λC2 = 2× 10−5 h−1, λC1 = 3× 10−5 h−1,
λP = 2× 10−5 h−1, CC = 0.98, CP = 0.99, µDR = 0.125 h−1, and µR = 0.05 h−1. The bounds
have been computed using the method “Standard Randomization” with an error requirement ε =

10−10

G.3 A Performability Model of a Multiprocessor System 137

Table G.1: Size of Xb and bounds obtained for the one-year unreliability for increasing values of
M .

M states transitions lower bound upper bound
1 7 17 0.0821056001 0.2179152859
2 22 95 0.0885426759 0.0899597496
3 64 376 0.0886092875 0.0886180552
4 172 1,234 0.0886097050 0.0886097439
5 418 3,502 0.0886097068 0.0886097070

0.01

0.1

1

2 4 6 8 10 12 14 16 18 20

N

CVC=0.95
CVC=0.98
CVC=0.99

Figure G.3: Results obtained for the one-year unreliability of the storage system.

Assume that we want to investigate the impact of N and CC on the one-year unreliability of
the storage system with the remaining parameters with the previously given values. We can take
for CC the values 0.95, 0.98 and 0.99 and for N the values 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20.
According to the results shown on Table G.1, M = 5 should yield very tight bounds. Figure G.3
plots the obtained results. (In the figure, CC is denoted CVC.)

G.3 A Performability Model of a Multiprocessor System

The third and last example is a performability model of a multiprocessor system. The system in-
cludes 16 processors interconnected by an 8-node hypercube, as shown in Figure G.4. Processors
fail with rate λP; nodes of the hypercube fail with rate λN; links of the hypercube fail with rate
λL. A fault of a processor is covered with probability CP; a fault of a node of the hypercube is
covered with probability CN. Coverage to link faults is assumed perfect. There is an unlimited
number of repairmen to repair components in covered failure. The repair rate is µP for processors,

138 G Some Sizable Examples

N0

N1

N6

N4

N5

P0

P1 P8

P13

P12

P14

P15P6

P7

P2

P3

P5

P11

P9

N2

N3
N7

P4

P10

Figure G.4: Architecture of the fault-tolerant multiprocessor system.

µN for nodes, and µL for links. A completely down system because there was an uncovered fault
is brought to a fully operational state without failed components at rate µG. It is assumed the
availability of diagnosis and reconfiguration procedures to determine a subset of interconnected
unfailed processors of maximal size and to reconfigure the multiprocessor so that it works using
such a maximal subset. The measure of interest is CRCD(t, s) using as reward rates the speedup
function of the number of connected processors in the healthy subset in which the system is con-
figured described in Table G.2. This gives the probability that the normalized performance of the
multiprocessor in the time interval [0, t] is > s. This allows to take into account that the per-
formance of the multiprocessor degrades as components fail. The system is initially in the state
without failed components.

An exact rewarded CTMC of the multiprocessor has an unmanageable state space. Instead,
we will use bounding models with state space S ∪ {f}, where f is an absorbing state in which
the bounding model enters when the exact model would exit subset S and S includes the states
with up to M covered faults and the state in which the system is down due to an uncovered fault.
By assigning to the absorbing state a reward rate rf = 0 we obtain a lower bounding model;
by assigning to the absorbing state a reward rate rf = 12 we obtain an upper bounding model.
A model specification including a model specification file mp.spec and a C file mp.c is given
next (for the file mp.spec we illustrate its contents). The specification includes an int parameter
UB such that when UB = 0 the lower bound is computed and when UB ̸= 0 the upper bound is
computed and another int parameter MAXF indicating the maximum number of covered faults
for which states have to be included in S. An external double function is used to compute the
reward rates. Programming that function is relatively complicated since it requires to determine the
number of processors in a maximum healthy connected subset of processors. That programming
is performed in the file mp.c. In file mp.spec, note the use of the state variable NF keeping track
of the number of covered faults and that the construct initial probability is not used because
the initial probability distribution is concentrated in the “start state” of the model specification.
Note also that when the bounding model has to enter either the absorbing state f or the state
in which the system is down due to an uncovered fault, the state variables are reset not to have
multiple absorbing states and multiple states in which the system is down due to an uncovered

G.3 A Performability Model of a Multiprocessor System 139

Table G.2: Speedups in h−1 of the multiprocessor system as a function of the number of connected
operational processors.

processors speedup
1 1
2 1.96667
3 2.9
4 3.8
5 4.66667
6 5.5
7 6.3
8 7.06667
9 7.8

10 8.5
11 9.16667
12 9.8
13 10.4
14 10.96667
15 11.5
16 12

fault.
mp.spec

parameters

int

UB, /* yes for upper bound; no for lower bound */

MAXF, /* maximum number of covered faults */

double

LDP, /* processor failure rate */

LDN, /* node failure rate */

LDL, /* link failure rate */

CP, /* processor coverage */

CN, /* node coverage */

MUP, /* processor repair rate */

MUN, /* node repair rate */

MUL, /* link rate */

MUG /* global repair rate from state with uncovered fault */

state_variables

P0, /* processor 0 up */

P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15,

N0, /* node 0 up */

N1, N2, N3, N4, N5, N6, N7,

L0_1, /* link from node 0 to node 1 up */

L0_2, L0_4, L1_0, L1_3, L1_5, L2_0, L2_3, L2_6, L3_1, L3_2, L3_7, L4_0,

140 G Some Sizable Examples

L4_5, L4_6, L5_1, L5_4, L5_7, L6_2, L6_4, L6_7, L7_3, L7_5, L7_6,

NF, /* number of covered faults */

UNCOV, /* yes if uncovered fault */

ABS /* yes if absorbing state */

external

double

proc_rate(int, int, int, int, int, int, int, int, int, int, int, int,

int, int, int, int, int, int, int, int, int, int, int, int,

int, int, int, int, int, int, int, int, int, int, int, int,

int, int, int, int, int, int, int, int, int, int, int, int,

int, int, int)

start_state

P0=yes, P1=yes, P2=yes, P3=yes, P4=yes, P5=yes, P6=yes, P7=yes,

P8=yes, P9=yes, P10=yes, P11=yes, P12=yes, P13=yes, P14=yes,

P15=yes,

N0=yes, N1=yes, N2=yes, N3=yes, N4=yes, N5=yes, N6=yes, N7=yes,

L0_1=yes, L0_2=yes, L0_4=yes,

L1_0=yes, L1_3=yes, L1_5=yes,

L2_0=yes, L2_3=yes, L2_6=yes,

L3_1=yes, L3_2=yes, L3_7=yes,

L4_0=yes, L4_5=yes, L4_6=yes,

L5_1=yes, L5_4=yes, L5_7=yes,

L6_2=yes, L6_4=yes, L6_7=yes,

L7_3=yes, L7_5=yes, L7_6=yes,

NF=0, UNCOV=no, ABS=no

reward_rate

proc_rate(UB,

P0,P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14,P15,

N0,N1,N2,N3,N4,N5,N6,N7,

L0_1,L0_2,L0_4,

L1_0,L1_3,L1_5,

L2_0,L2_3,L2_6,

L3_1,L3_2,L3_7,

L4_0,L4_5,L4_6,

L5_1,L5_4,L5_7,

L6_2,L6_4,L6_7,

L7_3,L7_5,L7_6,

UNCOV,ABS)

production_rules

/* failure of processor 0 */

if P0 action P0_F with_rate LDP

if NF<=MAXF-1 response COV with_prob CP

next_state P0=no, NF++

if NF==MAXF response COV with_prob CP

G.3 A Performability Model of a Multiprocessor System 141

next_state P0=no, P1=no, P2=no, P3=no, P4=no, P5=no, P6=no, P7=no, P8=no,

P9=no, P10=no, P11=no, P12=no, P13=no, P14=no, P15=no, N0=no,

N1=no, N2=no, N3=no, N4=no, N5=no, N6=no, N7=no, L0_1=no,

L0_2=no, L0_4=no, L1_0=no, L1_3=no, L1_5=no, L2_0=no, L2_3=no,

L2_6=no, L3_1=no, L3_2=no, L3_7=no, L4_0=no, L4_5=no, L4_6=no,

L5_1=no, L5_4=no, L5_7=no, L6_2=no, L6_4=no, L6_7=no, L7_3=no,

L7_5=no, L7_6=no, NF=0, UNCOV=no, ABS=yes

response UNCOV with_prob 1-CP

next_state P0=no, P1=no, P2=no, P3=no, P4=no, P5=no, P6=no, P7=no, P8=no,

P9=no, P10=no, P11=no, P12=no, P13=no, P14=no, P15=no, N0=no,

N1=no, N2=no, N3=no, N4=no, N5=no, N6=no, N7=no, L0_1=no,

L0_2=no, L0_4=no, L1_0=no, L1_3=no, L1_5=no, L2_0=no, L2_3=no,

L2_6=no, L3_1=no, L3_2=no, L3_7=no, L4_0=no, L4_5=no, L4_6=no,

L5_1=no, L5_4=no, L5_7=no, L6_2=no, L6_4=no, L6_7=no, L7_3=no,

L7_5=no, L7_6=no, NF=0, UNCOV=yes, ABS=no

end

...

/* failure of processor 15 */

if P15 action P15_F with_rate LDP

if NF<=MAXF-1 response COV with_prob CP

next_state P15=no, NF++

if NF==MAXF response COV with_prob CP

next_state P0=no, P1=no, P2=no, P3=no, P4=no, P5=no, P6=no, P7=no, P8=no,

P9=no, P10=no, P11=no, P12=no, P13=no, P14=no, P15=no, N0=no,

N1=no, N2=no, N3=no, N4=no, N5=no, N6=no, N7=no, L0_1=no,

L0_2=no, L0_4=no, L1_0=no, L1_3=no, L1_5=no, L2_0=no, L2_3=no,

L2_6=no, L3_1=no, L3_2=no, L3_7=no, L4_0=no, L4_5=no, L4_6=no,

L5_1=no, L5_4=no, L5_7=no, L6_2=no, L6_4=no, L6_7=no, L7_3=no,

L7_5=no, L7_6=no, NF=0, UNCOV=no, ABS=yes

response UNCOV with_prob 1-CP

next_state P0=no, P1=no, P2=no, P3=no, P4=no, P5=no, P6=no, P7=no, P8=no,

P9=no, P10=no, P11=no, P12=no, P13=no, P14=no, P15=no, N0=no,

N1=no, N2=no, N3=no, N4=no, N5=no, N6=no, N7=no, L0_1=no,

L0_2=no, L0_4=no, L1_0=no, L1_3=no, L1_5=no, L2_0=no, L2_3=no,

L2_6=no, L3_1=no, L3_2=no, L3_7=no, L4_0=no, L4_5=no, L4_6=no,

L5_1=no, L5_4=no, L5_7=no, L6_2=no, L6_4=no, L6_7=no, L7_3=no,

L7_5=no, L7_6=no, NF=0, UNCOV=yes, ABS=no

end

/* failure of node 0 */

if N0 action N0_F with_rate LDN

if NF<=MAXF-1 response COV with_prob CN

next_state N0=no, NF++

if NF==MAXF response COV with_prob CN

142 G Some Sizable Examples

next_state P0=no, P1=no, P2=no, P3=no, P4=no, P5=no, P6=no, P7=no, P8=no,

P9=no, P10=no, P11=no, P12=no, P13=no, P14=no, P15=no, N0=no,

N1=no, N2=no, N3=no, N4=no, N5=no, N6=no, N7=no, L0_1=no,

L0_2=no, L0_4=no, L1_0=no, L1_3=no, L1_5=no, L2_0=no, L2_3=no,

L2_6=no, L3_1=no, L3_2=no, L3_7=no, L4_0=no, L4_5=no, L4_6=no,

L5_1=no, L5_4=no, L5_7=no, L6_2=no, L6_4=no, L6_7=no, L7_3=no,

L7_5=no, L7_6=no, NF=0, UNCOV=no, ABS=yes

response UNCOV with_prob 1-CN

next_state P0=no, P1=no, P2=no, P3=no, P4=no, P5=no, P6=no, P7=no, P8=no,

P9=no, P10=no, P11=no, P12=no, P13=no, P14=no, P15=no, N0=no,

N1=no, N2=no, N3=no, N4=no, N5=no, N6=no, N7=no, L0_1=no,

L0_2=no, L0_4=no, L1_0=no, L1_3=no, L1_5=no, L2_0=no, L2_3=no,

L2_6=no, L3_1=no, L3_2=no, L3_7=no, L4_0=no, L4_5=no, L4_6=no,

L5_1=no, L5_4=no, L5_7=no, L6_2=no, L6_4=no, L6_7=no, L7_3=no,

L7_5=no, L7_6=no, NF=0, UNCOV=yes, ABS=no

end

...

/* failure of node 7 */

if N7 action N7_F with_rate LDN

if NF<=MAXF-1 response COV with_prob CN

next_state N7=no, NF++

if NF==MAXF response COV with_prob CN

next_state P0=no, P1=no, P2=no, P3=no, P4=no, P5=no, P6=no, P7=no, P8=no,

P9=no, P10=no, P11=no, P12=no, P13=no, P14=no, P15=no, N0=no,

N1=no, N2=no, N3=no, N4=no, N5=no, N6=no, N7=no, L0_1=no,

L0_2=no, L0_4=no, L1_0=no, L1_3=no, L1_5=no, L2_0=no, L2_3=no,

L2_6=no, L3_1=no, L3_2=no, L3_7=no, L4_0=no, L4_5=no, L4_6=no,

L5_1=no, L5_4=no, L5_7=no, L6_2=no, L6_4=no, L6_7=no, L7_3=no,

L7_5=no, L7_6=no, NF=0, UNCOV=no, ABS=yes

response UNCOV with_prob 1-CN

next_state P0=no, P1=no, P2=no, P3=no, P4=no, P5=no, P6=no, P7=no, P8=no,

P9=no, P10=no, P11=no, P12=no, P13=no, P14=no, P15=no, N0=no,

N1=no, N2=no, N3=no, N4=no, N5=no, N6=no, N7=no, L0_1=no,

L0_2=no, L0_4=no, L1_0=no, L1_3=no, L1_5=no, L2_0=no, L2_3=no,

L2_6=no, L3_1=no, L3_2=no, L3_7=no, L4_0=no, L4_5=no, L4_6=no,

L5_1=no, L5_4=no, L5_7=no, L6_2=no, L6_4=no, L6_7=no, L7_3=no,

L7_5=no, L7_6=no, NF=0, UNCOV=yes, ABS=no

end

/* failure of link from node 0 to node 1 */

if L0_1 action L0_1_F with_rate LDL

if NF<=MAXF-1 response NOABS

next_state L0_1=no, NF++

if NF==MAXF response ABS

G.3 A Performability Model of a Multiprocessor System 143

next_state P0=no, P1=no, P2=no, P3=no, P4=no, P5=no, P6=no, P7=no, P8=no,

P9=no, P10=no, P11=no, P12=no, P13=no, P14=no, P15=no, N0=no,

N1=no, N2=no, N3=no, N4=no, N5=no, N6=no, N7=no, L0_1=no,

L0_2=no, L0_4=no, L1_0=no, L1_3=no, L1_5=no, L2_0=no, L2_3=no,

L2_6=no, L3_1=no, L3_2=no, L3_7=no, L4_0=no, L4_5=no, L4_6=no,

L5_1=no, L5_4=no, L5_7=no, L6_2=no, L6_4=no, L6_7=no, L7_3=no,

L7_5=no, L7_6=no, NF=0, UNCOV=no, ABS=yes

end

...

/* failure of link from node 7 to node 6 */

if L7_6 action L7_6_F with_rate LDL

if NF<=MAXF-1 response NOABS

next_state L7_6=no, NF++

if NF==MAXF response ABS

next_state P0=no, P1=no, P2=no, P3=no, P4=no, P5=no, P6=no, P7=no, P8=no,

P9=no, P10=no, P11=no, P12=no, P13=no, P14=no, P15=no, N0=no,

N1=no, N2=no, N3=no, N4=no, N5=no, N6=no, N7=no, L0_1=no,

L0_2=no, L0_4=no, L1_0=no, L1_3=no, L1_5=no, L2_0=no, L2_3=no,

L2_6=no, L3_1=no, L3_2=no, L3_7=no, L4_0=no, L4_5=no, L4_6=no,

L5_1=no, L5_4=no, L5_7=no, L6_2=no, L6_4=no, L6_7=no, L7_3=no,

L7_5=no, L7_6=no, NF=0, UNCOV=no, ABS=yes

end

/* global repair from state with uncovered failure */

if UNCOV action UN_R with_rate MUG

next_state P0=yes, P1=yes, P2=yes, P3=yes, P4=yes, P5=yes, P6=yes, P7=yes,

P8=yes, P9=yes, P10=yes, P11=yes, P12=yes, P13=yes, P14=yes,

P15=yes, N0=yes, N1=yes, N2=yes, N3=yes, N4=yes, N5=yes, N6=yes,

N7=yes, L0_1=yes, L0_2=yes, L0_4=yes, L1_0=yes, L1_3=yes, L1_5=yes,

L2_0=yes, L2_3=yes, L2_6=yes, L3_1=yes, L3_2=yes, L3_7=yes,

L4_0=yes, L4_5=yes, L4_6=yes, L5_1=yes, L5_4=yes, L5_7=yes,

L6_2=yes, L6_4=yes, L6_7=yes, L7_3=yes, L7_5=yes, L7_6=yes,

NF=0, UNCOV=no, ABS=no

/* repair of node 0 */

if !ABS && !UNCOV && !N0 action N0_R with_rate MUN

next_state N0=yes, NF--

...

/* repair of node 7 */

if !ABS && !UNCOV && !N7 action N7_R with_rate MUN

next_state N7=yes, NF--

/* repair of processor 0 */

if !ABS && !UNCOV && !P0 action P0_R with_rate MUP

next_state P0=yes, NF--

144 G Some Sizable Examples

...

/* repair of processor 15 */

if !ABS && !UNCOV && !P15 action P15_R with_rate MUP

next_state P15=yes, NF--

/* repair of link from node 0 to node 1 */

if !ABS && !UNCOV && !L0_1 action L0_1_R with_rate MUL

next_state L0_1=yes, NF--

...

/* repair of link from node 7 to node 6 */

if !ABS && !UNCOV && !L7_6 action L7_6_R with_rate MUL

next_state L7_6=yes, NF--

mp.c

#include "mp.h"

#define YES 1

#define NO 0

int regstat(int sv[], int ipar[], double dpar[], long index)

{

DECLARE_SYMBOLS;

if (NF==0 && !UNCOV && !ABS) return 1;

else return 0;

}

static double speedup(int n)

{

switch (n){

case 0: return 0.0;

case 1: return 1.0;

case 2: return 1.96667;

case 3: return 2.9;

case 4: return 3.8;

case 5: return 4.66667;

case 6: return 5.5;

case 7: return 6.3;

case 8: return 7.06667;

case 9: return 7.8;

case 10: return 8.5;

case 11: return 9.16667;

case 12: return 9.8;

case 13: return 10.4;

case 14: return 10.96667;

case 15: return 11.5;

case 16: return 12.0;

default: return 0.0;

}

}

G.3 A Performability Model of a Multiprocessor System 145

double proc_rate(int UB, int P0, int P1, int P2, int P3, int P4, int P5,

int P6, int P7, int P8, int P9, int P10, int P11, int P12,

int P13, int P14, int P15, int N0, int N1, int N2, int N3,

int N4, int N5, int N6, int N7, int L0_1, int L0_2, int L0_4,

int L1_0, int L1_3, int L1_5, int L2_0, int L2_3, int L2_6,

int L3_1, int L3_2, int L3_7, int L4_0, int L4_5, int L4_6,

int L5_1, int L5_4, int L5_7, int L6_2, int L6_4, int L6_7,

int L7_3, int L7_5, int L7_6, int UNCOV, int ABS)

{

int p[16], n[8], con[8][8], node[9], max_proc, number, nnodes, clique,

nproc, i, j, k, l;

if (UNCOV) return speedup(0);

if (ABS && UB) return speedup(16);

if (ABS && !UB) return speedup(0);

p[0] = P0; p[1] = P1; p[2] = P2; p[3] = P3; p[4] = P4; p[5] = P5; p[6] = P6;

p[7] = P7; p[8] = P8; p[9] = P9; p[10] = P10; p[11] = P11; p[12] = P12;

p[13] = P13; p[14] = P14; p[15] = P15; n[0] = N0; n[1] = N1; n[2] = N2;

n[3] = N3; n[4] = N4; n[5] = N5; n[6] = N6; n[7] = N7;

for (i = 0; i <= 7; i++) con[i][i] = n[i];

for (i = 1; i <= 7; i++){

if (L0_1)

for (j = 0; j <= 7; j++)

if (!con[0][j] && j != 0) con[0][j] = con[1][j];

if (L0_2)

for (j = 0; j <= 7; j++)

if (!con[0][j] && j != 0) con[0][j] = con[2][j];

if (L0_4)

for (j = 0; j <= 7; j++)

if (!con[0][j] && j != 0) con[0][j] = con[4][j];

if (L1_0)

for (j = 0; j <= 7; j++)

if (!con[1][j] && j != 1) con[1][j] = con[0][j];

if (L1_3)

for (j = 0; j <= 7; j++)

if (!con[1][j] && j != 1) con[1][j] = con[3][j];

if (L1_5)

for (j = 0; j <= 7; j++)

if (!con[1][j] && j != 1) con[1][j] = con[5][j];

if (L2_0)

for (j = 0; j <= 7; j++)

if (!con[2][j] && j != 2) con[2][j] = con[0][j];

if (L2_3)

for (j = 0; j <= 7; j++)

if (!con[2][j] && j != 2) con[2][j] = con[3][j];

if (L2_6)

for (j = 0; j <= 7; j++)

if (!con[2][j] && j != 2) con[2][j] = con[6][j];

if (L3_1)

for (j = 0; j <= 7; j++)

if (!con[3][j] && j != 3) con[3][j] = con[1][j];

if (L3_2)

for (j = 0; j <= 7; j++)

146 G Some Sizable Examples

if (!con[3][j] && j != 3) con[3][j] = con[2][j];

if (L3_7)

for (j = 0; j <= 7; j++)

if (!con[3][j] && j != 3) con[3][j] = con[7][j];

if (L4_0)

for (j = 0; j <= 7; j++)

if (!con[4][j] && j != 4) con[4][j] = con[0][j];

if (L4_5)

for (j = 0; j <= 7; j++)

if (!con[4][j] && j != 4) con[4][j] = con[5][j];

if (L4_6)

for (j = 0; j <= 7; j++)

if (!con[4][j] && j != 4) con[4][j] = con[6][j];

if (L5_1)

for (j = 0; j <= 7; j++)

if (!con[5][j] && j != 5) con[5][j] = con[1][j];

if (L5_4)

for (j = 0; j <= 7; j++)

if (!con[5][j] && j != 5) con[5][j] = con[4][j];

if (L5_7)

for (j = 0; j <= 7; j++)

if (!con[5][j] && j != 5) con[5][j] = con[7][j];

if (L6_2)

for (j = 0; j <= 7; j++)

if (!con[6][j] && j != 6) con[6][j] = con[2][j];

if (L6_4)

for (j = 0; j <= 7; j++)

if (!con[6][j] && j != 6) con[6][j] = con[4][j];

if (L6_7)

for (j = 0; j <= 7; j++)

if (!con[6][j] && j != 6) con[6][j] = con[7][j];

if (L7_3)

for (j = 0; j <= 7; j++)

if (!con[7][j] && j != 7) con[7][j] = con[3][j];

if (L7_5)

for (j = 0; j <= 7; j++)

if (!con[7][j] && j != 7) con[7][j] = con[5][j];

if (L7_6)

for (j = 0; j <= 7; j++)

if (!con[7][j] && j != 7) con[7][j] = con[6][j];

}

max_proc = 0;

for (i = 1; i <= 255; i++){

number = i;

nnodes = 0;

for (j = 0; number > 0; j++){

l = number % 2;

if (l == 1){

nnodes++;

node[nnodes] = j;

}

number = number/2;

}

clique = YES;

G.3 A Performability Model of a Multiprocessor System 147

for (j = 1; j <= nnodes; j++)

for (k = 1; k <= nnodes; k++)

if (!con[node[j]][node[k]]){

clique = NO;

break;

}

if (clique){

nproc = 0;

for (j = 1; j <= nnodes; j++){

if (p[2*node[j]]) nproc++;

if (p[2*node[j]+1]) nproc++;

}

if (nproc > max_proc) max_proc = nproc;

}

}

if (max_proc == 0 && (p[0] || p[1] || p[2] || p[3] || p[4] || p[5] || p[6]

|| p[7] || p[8] || p[9] || p[10] || p[11] || p[12] || p[13] || p[14]

|| p[13])) max_proc = 1;

return speedup(max_proc);

}

For M = 4, the bounding rewarded CTMC models have 213,055 states and 2,072,658 tran-
sitions and the obtained bounds are tight. As numerical solution method we will use the method
Bounding Transformation/Bounding Regenerative Transformation (BT/BRT) with DC = 1 and
regenerative state the state in which no component is failed. That regenerative state is specified
in the file mp.c by means of the function with predefined name and prototype regstat (see Sec-
tion 4.1, page 41). We will use as a baseline the set of model parameter values λP = 2×10−5 h−1,
λN = 10−5 h−1, λL = 5 × 10−6 h−1, CP = 0.99, CN = 0.995, µP = 0.1 h−1, µN = 0.05 h−1,
µL = 0.05 h−1, and µG = 0.2 h−1, and will investigate how the probability that the normalized
performance of the multiprocessor in the time interval [0, t] is > s at t = 2 years is enhanced by
improving its maintenance in three different ways: 1) faster repair of processors (µP = 0.2 h−1),
2) faster repair of components of the hypercube (µN = µL = 0.1 h−1), and 3) faster repair of
down systems due to an uncovered fault (µG = 0.4 h−1). For all the considered sets of model
parameter values, the chosen regenerative state is the so-called “natural” regenerative state and
with that selection, the rewarded CTMC models satisfy the conditions under which the bounds
given by the BT/BRT method with DC = 1 should be tight [29]. The obtained results are plotted
in Figure G.5. We plot the average of the lower and upper bound. The bounds are tight enough
to consider the measure well computed at the plot resolution level. We can note that the most ef-
ficient way of improving the probability that the normalized performance of the multiprocessor in
the time interval [0, t] is > s depends on the required probability level. When the normalized per-
formance has to be guaranteed with very high probability, improving the repair of down systems
due to an uncovered fault is the most efficient alternative; when the accumulated performance has
to be guaranteed with moderate probability, the most efficient alternative is to improve the repair
of processors; for intermediate values of the probability with which the accumulated performance
has to be guaranteed, the most efficient alternative is to improve the repair of components of the
hypercube. Using the simpler EARR(t) = E[(1/t)

∫ t
0 rX(τ) dτ] measure would have led to the

conclusion that the most efficient alternative is to improve the repair of components of the hy-

148 G Some Sizable Examples

0

0.2

0.4

0.6

0.8

1

0.001 0.002 0.004 0.006 0.01 0.02
p

baseline
MUP=0.2

MUN=MUL=0.1
MUG=0.4

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

0.008 0.009 0.01 0.012 0.014 0.016 0.018 0.02
p

baseline
MUP=0.2

MUN=MUL=0.1
MUG=0.4

Figure G.5: CRCD(t, (12− p)t) as a function of p for t = 2 years and the baseline set of param-
eters and three alternatives for improving the maintenance.

Table G.3: EARR(t) measure for t = 2 years and the baseline repair rates, a set of repair rates
with µP = 0.2 h−1, a set of repair rates with µN = µL = 0.1 h−1, and a set of repair rates with
µG = 0.4 h−1.

case EARR(t)

baseline 11.996558
µP = 0.2 h−1 11.997350

µN = µL = 0.1 h−1 11.997379
µG = 0.4 h−1 11.996666

percube, as Table G.3 illustrates. Thus, use of the more detailed measure CRCD(t, s) provides
interesting information to guide the maintenance of the fault-tolerant multiprocessor system.

References

[1] J. A. Carrasco. Computation of bounds for transient measures of large rewarded Markov
models using regenerative randomization. Computers and Operations Research, 30(6):1005–
1035, June 2003.

[2] V. Suñé and J. A. Carrasco. Efficient implementations of the randomization method with
control of the relative error. Computers and Operations Research, 32:1089–1114, May 2005.

[3] B. Sericola. Availability analysis of reparairable computer systems and stationary regime
detection. IEEE Transactions on Computers, 48(11):1166–1172, November 1999.

[4] J. A. Carrasco. Transient analysis of some rewarded Markov models using randomization
with quasistationarity detection. IEEE Trans. on Computers, 53(9):1106–1120, September
2004.

[5] J. A. Carrasco. Transient analysis of large Markov models with absorbing states using
regenerative randomization. Communications in Statistics–Simulation and Computation,
34(4):1037–1052, October-December 2005.

[6] J. A. Carrasco. Transient analysis of rewarded continuous time Markov models by regener-
ative randomization with Laplace transform inversion. The Computer Journal, 46(1):84–99,
January 2003.

[7] J. A. Carrasco. Computationally efficient and numerically stable reliability bounds for re-
pairable fault-tolerant systems. IEEE Trans. on Computers, 51(3):154–168, March 2002.

[8] J. R. Dormand and P. J. Prince. A family of embedded Runge-Kutta formulae. Journal of
Computational and Applied Mathematics, 6(1):19–26, 1980.

[9] P. J. Prince and J. R. Dormand. High order embedded Runge-Kutta formulae. Journal of
Computational and Applied Mathematics, 7(1):67–75, 1981.

[10] Byron L. Ehle. On Padé approximations to the exponential function and A-stable methods
for the numerical solution of initial value problems. Technical Report CSRR 2010, Univ. of
Waterloo, Dept. AACS, 1969.

[11] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and Differential-
Algebraic Problems, 2nd revised ed. Springer, 1996.

[12] Jacques J. B. de Swart and Gustaf Söderlind. On the construction of error estimators for
implicit Runge-Kutta methods. J. of Comp. and App. Math., 86:347–358, 1997.

150 REFERENCES

[13] R. S. Varga. On diagonal dominance arguments for bounding ||A−1||∞. Lin. Alg. App.,
14:211–217, 1976.

[14] J. H. Ahlberg and E. N. Nilson. Convergence properties of the spline fit. J. SIAM, 11:95–104,
1963.

[15] J. M. Varah. A lower bound for the smallest singular value of a matrix. Lin. Alg. App.,
11:3–5, 1975.

[16] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the
solution of nonsymmetric linear systems. SIAM J. on Scientific Computing, 13(2):631–644,
1992.

[17] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: A 623-dimensionally equidis-
tributerd uniform pseudorandom number generator. ACM Transactions on Modeling and
Computer Simulation, 8(1):3–30, 1998.

[18] Winfried K. Grassmann, Michael I. Taksar, and Daniel P. Heyman. Regenerative analysis
and steady state distributions for Markov chains. Operations Research, 33(5):1107–1116,
1985.

[19] Colm Art O’Cinneide. Relative-error bounds for the LU decomposition via the GTH algo-
rithm. Numerische Mathematik, 73(4):507–519, 1996.

[20] William J. Stewart. Computational Probability (W. Grassman, ed.), chapter Numerical meth-
ods for computing stationary distributions of finite irreducible Markov chains. Kluwer Aca-
demic Publishers, 2000.

[21] William J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, Princeton, NJ, 1994.

[22] V. Suñé, J. L. Domingo, and J. A. Carrasco. Numerical iterative methods for Markovian
dependability and performability models: New results and a comparison. Performance Eval-
uation, 39(1–4):99–125, February 2000.

[23] Maria Sosonkina, Layne T. Watson, Rakesh K. Kapania, and Homer F. Walker. A new
adaptive GMRES algorithm for achieving high accuracy. Num. Lin. Alg. App., 5(4):275–
297, 1998.

[24] Y. Saad and M. H. Shultz. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3):856–869, 1986.

[25] T. Dayar and N. Akar. Computing moments of first passage times to a subset of states in
Markov chains. SIAM Journal of Matrix Analysis and Applications, 27(2):396–412, 2005.

[26] P. Heidelberger, J. K. Muppala, and K. S. Trivedi. Accelerating mean time to failure compu-
tations. Performance Evaluation, 27-28:627–645, October 1996.

[27] H. Nabli and B. Sericola. Performability analysis: A new algorithm. IEEE Transactions on
Computers, 45(4):491–494, 1996.

REFERENCES 151

[28] V. Suñé, J. A. Carrasco, H. Nabli, and B. Sericola. Comment on ”performability analysis: A
new algorithm”. IEEE Transactions on Computers, 59(1):137–138, 2010.

[29] J. A. Carrasco. Two methods to compute bounds for the distribution of cumulative reward
for large Markov models. Performance Evaluation, 63(12):1165–1195, December 2006.

[30] G. Rubino and B. Sericola. Interval availability analysis using denumerable Markov pro-
cesses: Application to multiprocessor subject to breakdowns and repair. IEEE Transactions
on Computers, 44(2):286–291, February 1995.

[31] C. Clopper and E. S. Pearson. The use of confidence or fiducial limits illustrated in the case
of the binomial. Biometrica, 26:404–413, 1934.

[32] Juan A: Carrasco. A new general-purpose method for the computation of the interval avail-
ability distribution. INFORMS Journal on Computing, 2012. To appear.

[33] J. A. Carrasco. An efficient and numerically stable method for computing bounds for the in-
terval availability distribution. Technical Report DMSD 2005 1, Departament d’Enginyeria
Electrònica, Universitat Politècnica de Catalunya, 2005. Available at ftp://ftp-eel.upc.
es/techreports. To appear in Journal of Computing.

[34] J. A. Carrasco. Solving large interval availability models using a model transformation ap-
proach. Computers and Operations Research, 31(5):807–861, September 2004.

[35] J. A. Carrasco and V. Suñé. A numerical method for the evaluation of the distribution of
cumulative reward till exit of a subset of transient states of a markov reward model. IEEE
Transactions on Dependable and Secure Computing, 8(6):798–809, 2011.

[36] V. G. Kulkarni. A new class of multivariate phase type distributions. Operations Research,
37(1):151–158, January-February 1989.

[37] V. G. Kulkarni. Modeling and Analysis of Stochastic Systems. Chapman and Hall, New York,
1995.

[38] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. SIAM,
Philadelphia, 1994.

[39] M. Kijima. Markov Processes for Stochastic Modeling. University Press, Cambridge, 1997.

[40] A. V. Aho, J. D. Ullman, and J. E. Hopcroft. Data Structures and Algorithms. Addison-
Wesley, Boston, 1983.

